Package: modelit 1.4.6

Philippe Grosjean

modelit: Statistical Models for 'SciViews::R'

Create and use statistical models (linear, general, nonlinear...) with extensions to support rich-formatted tables, equations and plots for the 'SciViews::R' dialect.

Authors:Philippe Grosjean [aut, cre], Guyliann Engels [aut]

modelit_1.4.6.tar.gz
modelit_1.4.6.zip(r-4.5)modelit_1.4.6.zip(r-4.4)modelit_1.4.6.zip(r-4.3)
modelit_1.4.6.tgz(r-4.4-any)modelit_1.4.6.tgz(r-4.3-any)
modelit_1.4.6.tar.gz(r-4.5-noble)modelit_1.4.6.tar.gz(r-4.4-noble)
modelit_1.4.6.tgz(r-4.4-emscripten)modelit_1.4.6.tgz(r-4.3-emscripten)
modelit.pdf |modelit.html
modelit/json (API)
NEWS

# Install 'modelit' in R:
install.packages('modelit', repos = c('https://sciviews.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sciviews/modelit/issues

Pkgdown:https://www.sciviews.org

On CRAN:

sciviewsstatsmodels

3.30 score 1 stars 8 scripts 10 exports 168 dependencies

Last updated 30 days agofrom:5090a05927. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 23 2024
R-4.5-winNOTEDec 23 2024
R-4.5-linuxNOTEDec 23 2024
R-4.4-winOKDec 23 2024
R-4.4-macOKDec 23 2024
R-4.3-winOKDec 23 2024
R-4.3-macOKDec 23 2024

Exports:add_predictionsadd_residualsautoplot.lmautoplot.nlsfit_modelgeom_ref_linemaeqaermsersquare

Dependencies:abindanytimeaskpassbackportsbase64encBHbitbit64bootbroombroom.mixedbslibcachemcarcarDatachartcheckmateclicliprclustercodacodetoolscollapsecolorspacecommonmarkcorrplotcowplotcpp11crayondata.iodata.tabledeldirDerivdigestdoBydplyrellipsisequatiomaticevaluatefansifarverfastmapflextablefontawesomefontBitstreamVerafontLiberationfontquiverforcatsforeignFormulafsfurrrfuturegdtoolsgenericsggplot2ggplotifyggpubrggrepelggsciggsignifglobalsgluegridExtragridGraphicsgtablehighrHmischmshtmlTablehtmltoolshtmlwidgetshttpuvigraphinterpisobandjpegjquerylibjsonliteknitrlabelinglaterlatticelatticeExtralifecyclelistenvlme4lobstrlubridatemagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivofficeropensslparallellypbkrtestpillarpkgconfigpngpolynomprettyunitsprogresspromisesprotopryrpurrrquantregR6raggrappdirsRColorBrewerRcppRcppEigenreadrrlangrmarkdownrpartrstatixrstudioapisassscalesshinysourcetoolsSparseMstringistringrsurvivalsvBasesvFlowsvMiscsyssystemfontstabularisetextshapingtibbletidyrtidyselecttimechangetinytabletinytextsibbletzdbutf8uuidvctrsviridisviridisLitevroomwithrxfunxml2xtableyamlyulab.utilszeallotzip

Statistical Models for 'SciViews::R'

Rendered frommodelit.Rmdusingknitr::rmarkdownon Dec 23 2024.

Last update: 2024-05-01
Started: 2021-08-05

Readme and manuals

Help Manual

Help pageTopics
Statistical Models for 'SciViews::R'modelit-package modelit
Transform an lm or glm model into a functionas.function.lm
Transform an nls model into a functionas.function.nls
Chart an lm or glm model or diagnose its residuals visuallyautoplot.lm chart.lm
Chart an nls model or diagnose its residuals visuallyautoplot.nls chart.nls
Get a LaTeX equation from an nls or the summary of a nls modelsequation.nls equation.summary.nls
Fit a parsnip model and manipulate it as a base R model like lmAIC.model_fit anova.model_fit as.function.model_fit BIC.model_fit chart.model_fit coef.model_fit confint.model_fit cooks.distance.model_fit deviance.model_fit family.model_fit fitted.model_fit fit_model formula.model_fit hatvalues.model_fit labels.model_fit nobs.model_fit plot.model_fit residuals.model_fit rstandard.model_fit summary.model_fit variable.names.model_fit vcov.model_fit
Reexport of modelr functionsadd_predictions add_residuals geom_ref_line mae modelr-reexport qae rmse rsquare
Create a rich-formatted table using the coefficients of a glm objecttabularise_coef.glm
Create a rich-formatted table using the coefficients of an lm objecttabularise_coef.lm
Create a rich-formatted table using the coefficients of the nls objecttabularise_coef.nls
Create a rich-formatted table using the table of coefficients of the summary.glm objecttabularise_coef.summary.glm
Create a rich-formatted table using the table of coefficients of the summary.lm objecttabularise_coef.summary.lm
Create a rich-formatted table using the table of coefficients of the summary.nls objecttabularise_coef.summary.nls
Create a rich-formatted table from an anova objecttabularise_default.anova
Create a rich-formatted table from a glm objecttabularise_default.glm
Create a rich-formatted table from an lm objecttabularise_default.lm
Create a rich-formatted table from a nls objecttabularise_default.nls
Create a rich-formatted table from a summary.glm objecttabularise_default.summary.glm
Create a rich-formatted table from an summary.lm objecttabularise_default.summary.lm
Create a rich-formatted table from the summary of a nls objecttabularise_default.summary.nls
Create a glance version of the glm object as a rich-formatted tabletabularise_glance.glm
Glance version of the lm object into a flextable objecttabularise_glance.lm
Glance version of the nls object into a flextable objecttabularise_glance.nls
Tidy version of the anova object into a flextable objecttabularise_tidy.anova
Tidy version of the aov object into a flextable objecttabularise_tidy.aov
Create a tidy version of the glm object as a rich-formatted tabletabularise_tidy.glm
Tidy version of the lm object into a flextable objecttabularise_tidy.lm
Tidy version of the nls object into a flextable objecttabularise_tidy.nls