Package: svFlow (via r-universe)

June 30, 2024
Type Package
Version 1.2.1
Title Data Analysis Work Flow and Pipeline Operator for 'SciViews::R'

Description Data work flow analysis using 'proto’ objects and pipe
operator that integrates non-standard evaluation and the
'lazyeval' mechanism.

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>
Depends R (>=4.2.0)

Imports graphics (>=4.2.0), igraph (>= 1.4.2), proto (>= 1.0.0),
rlang (>= 0.2.0), utils (>=4.2.0)

Suggests datasets (>= 4.2.0), dplyr (>= 1.1.4), microbenchmark (>=
1.4.9), knitr (>= 1.42), rmarkdown (>= 2.21), spelling (>=
2.2.1), testthat (>= 3.0.0), lintr (>= 3.0.2)

License MIT + file LICENSE

URL https://github.com/SciViews/svFlow,

https://www.sciviews.org/SciViews-R/

BugReports https://github.com/SciViews/svFlow/issues
Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

VignetteBuilder knitr

Encoding UTF-8

Language en-US

ByteCompile yes

Config/testthat/edition 3

Repository https://sciviews.r-universe.dev

RemoteUrl https://github.com/SciViews/svFlow
RemoteRef HEAD

RemoteSha e827bf4b5adff5b400cb48eef1635d1510a6¢c316

https://github.com/SciViews/svFlow
https://www.sciviews.org/SciViews-R/
https://github.com/SciViews/svFlow/issues

2 svFlow-package
Contents
svFlow-package L 2
e 3
flow 4
graph_flow 6
PIPE_OPEIAtOr v v i it e e e e e e e e e e e e e e e e 7
QUOSUTE .+« v v v o v e 8
QUOS_UNAEISCOTE . .« . v v v v v i e e e e e e e e e e e e e e e 10
sttFlow . . e 11
Index 13
svFlow-package Data Analysis Work Flow and Pipeline Operator for ’SciViews::R’
Description

Data (work)flow analysis using proto objects (see proto()) and a pipe operator that integrates non-
standard evaluation and the tidyeval mechanism in a most transparent way.

Important functions

* %>.% and %>_% are two alternate pipe operators designed to supplement magrittr’s \ tidyverse
and elsewhere. They are provided for good reasons. %>.% requires explicit indication of
the position of . in the pipeline expression all the time. The expression is not modified.
As a consequence, it can never surprise you with an unexpected behavior, and all valid R
expressions are usable in the pipeline. Another consequence: it is very fast. %>_% works with
Flow objects that allow for encapsulation of satellite objects (data or functions) within the
pipeline. It is self-contained. The pipeline can be interrupted and restarted at any time. It also
allows for a class-less object-oriented approach with single inheritance (could be useful to test
easily different scenarios on the same pipeline and to prototype objects that are "pipe-aware").
It also manages the tidyeval mechanism for non-standard expressions in the most transparent
way: the only "rule" to remember is to suffix the name of variables that needs special treatment
with an underscore (_) and the pipe operator manages the rest for you.

* debug_flow() provides a convenient way to debug problematic pipelines build with our own
pipe operators %>.% and %>_% in a comfortable way. Everything from the step that raised a
error is available: the piped data, the expression to be evaluated, and possibly, the last state of
the Flow object. Everything can be inspected, modified, and the expression can be rerun as if
you were still right in the middle of the pipeline evaluation.

» flow() constructs a Flow object that is pipe-aware and tidyeval-aware. This opens new hori-
zons in your analysis workflow. You start building a simple ad hoc pipeline, then you can
include satellite data or functions right inside it, perhaps also test different scenarios by using
the object inheritance features of Flow (common parts are shared among the different sce-
narios, thus reducing the memory footprint). While your pipeline matures you gradually and
naturally move towards either a functional sequence or a dedicated object. The functional
sequence pathway consists in building a reusable function to recycle you pipeline in a dif-
ferent context. The object pathway is not fully developed yet in the present version. But in

the future, the object-oriented nature of Flow will also be leveraged, so that you could auto-
matically translate your "flow pipeline" into an S3 or R6 object with satellite data becoming
object attributes, and satellite functions becoming methods. The pipeline itself would then be-
come the default method for that object. Of course, both functions and objects derived from a
"flow pipeline" will be directly compatible with the tidyeval mechanism, as they will be most
tidyverse-friendly as possible per construction.

* str.Flow() compactly displays the content of a Flow object.

* as.quosure(), and unary + and - operators combined with formula objects provide an alter-
nate way to create quosures.

* quos_underscore() automatically converts arguments whose name ends with _ into quo-
sures, and this mechanism is used by our flow pipe operator to implement the tidyeval mech-
anism most transparently inside "flow pipelines".

. Pass first argument as dot to run code in second argument for pipe
operators that do not natively support dot-replacement scheme (base
R pipe operator)

Description

Pass first argument as dot to run code in second argument for pipe operators that do not natively
support dot-replacement scheme (base R pipe operator)

Usage

._(x, expr)
Arguments

X Object to pass to expr as dot (.).

expr Expression to execute, containing . as a placeholder.
Details

The function has a side-effect to assign x as . and unevaluated expr as .call in the calling environ-
ment. Therefore, make sure you do not use . or .call there for something else. In case expr fails
in the middle of a series of chained pipes, you can inspect . and .call or possibly rerun a modified
version of the instruction that failed on it for easier debugging purpose.

Value

The result from executing expr in the parent environment.

4 flow

Examples

The function is really supposed to be use in a pipe instruction

This example only runs on R >= 4.1

Not run:

1lm has data = as second argument, which does not fit well with the pipe |>
In R 4.1, one should write:

iris |> \(.)(Im(data = ., Sepal.Length ~ Petal.Length + Species))()
which is not very elegant ! With ._() it is more concise and straighforward
iris |> ._(Im(data = ., Sepal.Length ~ Petal.Length + Species))

End(Not run)

flow Create Flow objects to better organize pipelines in R

Description

Flow objects, as explicitly created by flow(), or implicitly by the %>_% pipe operator are proto
objects (class-less objects with possible inheritance) that can be combined nicely with pipelines
using the specialized flow pipe operator %>_% (or by using $). They allow for encapsulating satel-
lite objects/variables related to the pipeline, and they deal with non-standard evaluations using the
tidyeval mechanism automatically with minimal changes required by the user.

Usage

flow(. = NULL, .value = NULL, ...)

enflow(.value, env = caller_env(), objects = ls(env))
is.flow(x)

is_flow(x)

as.flow(x, ...)

as_flow(x, ...)

S3 method for class 'Flow'
x$name

S3 replacement method for class 'Flow
x$name <- value

Arguments

If a Flow object is provided, inherit from it, otherwise, create a new Flow object
inheriting from .GlobalEnv with . as pipe value.

flow

.value

env

objects

name

value

Details

The pipe value to pass to the object (used instead of ., in case both are provided).

For flow(), named arguments of other objects to create inside the Flow object.
If the name ends with _, then, the expression is automatically captured inside a
quosure* (see quos_underscore()). For print (), further arguments passed to
the delegated object_print() function (if it exists inside the Flow object), or
to the print () method of the object inside . value.

The environment to use for populating the Flow object. All objects from this
environment are injected into it, with the objects not starting with a dot and end-
ing with an underscore (_) automatically converted into quosures. The object
provided to .value= becomes the default value of the Flow object, that is, the
data transferred to the pipeline.

A character string with the name of the objects from env to import into the Flow
object. If env is the calling environment (by default), .value is the name of
an object, and that name appears in objects too, it is excluded from it to avoid
importing it twice. from that

An object (a Flow object, or anything to test if it is a Flow object in is_flow()).

The name of the item to get from a Flow object. If name starts with two dots
(..), the item is searched in the Flow object itself without inheritance, but the
name is stripped of its leading two dots first! If the content is a quosure, it is
automatically unquoted, and for the assignation version, if name ends with _,
the expression is automatically converted into a quosure.

The value or expression to assign to name inside the Flow object.

enflow() creates a Flow object in the head of a "flow pipeline" in the context of a functional
sequence, that is a function that converts an ad hoc, single use pipeline into a function reusable in a
different context. Satellite data become arguments of the function.

When a Flow object is created from scratch, it always inherits from .GlobalEnv, no matter where
the expression was executed (in fact, it inherits from an empty root Flow object itself inheriting
from .GlobalEnv). This is a deliberate design choice to overcome some difficulties and limitations
of proto objects, see proto(). enflow() creates a Flow object and populates it automatically with
all the objects that are present in env= (by default, the calling environment). It is primarily intended
to be used inside a function, as first instruction of a "flow pipeline". Hence, it collects all function
arguments inside that pipeline in a most convenient way.

See Also

str.Flow, quos_underscore, %>_%

Examples

library(svFlow)
library(dplyr)
data(iris)

foo <- function(data, x

= Sepal.Length, y_ = log_SL,

6 graph_flow

fun_ = mean, na_rm = TRUE)
enflow(data) %>_%
mutate(., y_ = log(x_)) %>_%
summarise(., fun_ = fun_(y_,
na.rm = na_rm_)) %>_% .

foo(iris)

foo(iris, x_ = Petal.Width)

foo(iris, x_ = Petal.Width, fun_ = median)

Unfortunately, this does not work, due to limitations of tidyeval's :=

#foo(iris, x_ = Petal.Width, fun_ = stats::median)

foo2 <- function(., x
enflow(.)

= Sepal.Length, y_ = log_SL, na_rm = TRUE)

foo2
f002(1:10) -> foo_obj
1s(foo_obj)

graph_flow Create a graph with Flow objects hierarchy

Description

A graph showing all Flow objects heritage is calculated, and displayed.

Usage

graph_flow(env = .GlobalEnv, child_to_parent = TRUE, plotit = TRUE, ...)
Arguments

env The environment to look for Flow objects. By default, itis . GlobalEnv, and you

should not change it, since all Flow objects are derived from it by construction.
child_to_parent
Do the arrows go from child to parent (by default), or in the other direction?

plotit Do we plot the graph (by default)?
Further parameters passed to plot.igraph().

Value

An igraph object (returned invisibly if plotit = TRUE.

See Also

flow

pipe_operator 7

Examples

<- flow()

<- a$flow()

<- b$flow()

<- a$flow()

Use of custom names

<- flow(.name = "parent")
<- e$flow(.name = "child")
graph_flow()

—H ® FF O O T O

Arrows pointing from childs to parents, and do not plot it
g <- graph_flow(child_to_parent = FALSE, plotit = FALSE)

g

plot(g)

pipe_operator Flow pipeline operators and debugging function

Description

Pipe operators. %>.% is a very simple and efficient pipe operator. %>_% is more complex. It forces
conversion to a Flow object inside a pipeline and automatically manage non-standard evaluation
through creation and unquoting of quosures for named arguments whose name ends with _.

Usage

X %>.% expr
X %>_% expr

debug_flow()

Arguments
X Value or Flow object to pass to the pipeline.
expr Expression to evaluation in the pipeline.
Details

With %>.%, the value must be explicitly indicated with a . inside the expression. The expression is
not modified, but the value is first assigned into the calling environment as . (warning! possibly
replacing any existing value... do not use . to name other objects). Also the expression is saved as
.call in the calling environment so that debug_flow() can retrieve are rerun it easily. If a Flow
object is used with %>.%, the .value is extracted from it into . first (and thus the Flow object is
lost).

In the case of %>_% the Flow object is passed or created, it is also assigned in the calling environ-
ment as . .. This can be used to refer to Flow object content within the pipeline expressions (e.g.,
.. $var).

8 quosure

For %>_%, the expression is reworked in such a way that a suitable lazyeval syntax is constructed
for each variable whose name ends with _, and that variable is explicitly searched starting from . ..
Thus, x_ is replaced by !'! . . $x. For such variables appearing at left of an = sign, it is also replaced
by := to keep correct R syntax (var_ ==>!!..$var :=). This way, you just need to follow
special variables by _, both in the flow() function arguments (to create quosures), and to the NSE
expressions used inside the pipeline to get the job done! The raw expression is saved as .call_raw,
while the reworked call is saved as . call for possible further inspection and debugging.

Finally, for %>_%, if expr is ., then, the last value from the pipe is extracted from the Flow object
and returned. It is equivalent, thus, to flow_obj$.value.

You can mix %>.% and %>_% within the same pipeline. In case you use %>.% with a flow pipeline, it
"unflows" it, extracting .value from the Flow object and further feeding it to the pipeline.

See Also

flow, quos_underscore

Examples

1

A simple pipeline with %>.% (explicit position of '.
library(svFlow)
library(dplyr)
data(iris)
iris2 <- iris %>.%
mutate(., log_SL = log(Sepal.Length)) %>.%
filter(., Species == "setosa")

required)

The %>.% operator is much faster than magrittr's %>%

(although this has no noticeable impact in most situations when the

pipeline in used in an ad hoc way, outside of loops or other constructs
that call it a larger number of times)

quosure Create and manipulate quosures easily

Description

Quosures are defined in {rlang} package as part of the tidy evaluation of non-standard expressions
(see quo()). Here, we provide an alternate mechanism using -~expr as a synonym of quo(expr).
Also, +quo_obj is equivalent to ! !quo_obj in {rlang}, and ++quo_obj both unquotes and evaluates
it in the right environment. Quosures are keystone objects in the tidy evaluation mechanism. So,
they deserve a special, clean and concise syntax to create and manipulate them.

The as_xxx() and is_xxx() further ease the manipulation of quosures or related objects.

quosure 9

Usage

S3 method for class 'formula'
el - e2

S3 method for class 'formula'
el + e2

S3 method for class 'quosure'
el * e2

S3 method for class 'quosure'
el + e2

S3 method for class 'unquoted'
el + e2

S3 method for class 'unquoted'
print(x, ...)

as.quosure(x, env = caller_env())
is.quosure(x)
is.formula(x)

is.bare_formula(x)

T (x)
Arguments
el Unary operator member, or first member of a binary operator.
e2 Second member of a binary operator (not used here, except for *).
X An expression
Further arguments passed to the print () method (not used yet).
env An environment specified for scoping of the quosure.

Details

- is defined as an unary minus operator for formula objects (which is not defined in base R, hence,
not supposed to be used otherwise). Thus, -~expr just converts a formula build using the base
~expr instruction into a quosure. as.quosure() does the same, when the expression is provided
directly, and allows also to define the enclosing environment (by default, it is the environment where
the code is evaluated, and it is also the case when using -~expr).

Similarly, the unary + operator is defined for quosure in order to easily "reverse" the mechanism
of quoting an expression with a logical complementary operator. It does something similar to !!
in {rlang}, but it can be used outside of tidy eval expressions. Since unary + has higher syntax

10 quos_underscore

precedence than ! in R, it is less susceptible to require parentheses (only * for exponentiation,
indexing/subsetting operators like $ or [, and namespace operators : : and : : : have higher prece-
dence). A specific * operator for quosures solves the precedence issue. :: or ::: are very unlikely
used in the context.

++quosure is indeed a two-steps operation (+(+quosure)). It first unquotes the quosure, returning
an unquoted object. Then, the second + evaluates the unquoted object. This allows for fine-
graded manipulation of quosures: you can unquote at one place, and evaluate the unquoted object
elsewhere (and, of course, the contained expression is always evaluated in the right environment,
despite all these manipulations).

'l and just evaluates its argument and passes the result. It is only useful inside a quasi-quoted
argument, see quasiquotation.

Value

These functions build or manipulated quosures and return such objects. +quosure creates an un-
quoted object. The + unary operator applied to unquoted objects evaluate the expression contained
in the quosure in the right environment.

See Also

quos_underscore, %>_%

Examples

x <- 1:10

Create a quosure (same as quo(x))

X_quo <- -~X

X_quo

Unquote it (same as !!x, but usable everywhere)

+X_quo

Unquote and evaluate the quosure

++X_quo

Syntax precedence issues (* has higher precedence than unary +)
is solved by redefining * for unquoted objects:

++x_quo*2

acts like if ++ had higher precedence than *, thus like if it was
(++x_quo)*2

Assign the unquoted expression

X_unquo <- +Xx_quo

... and use x_unquo in a different context
foo <- function(x) +x

foo(x_unquo)

quos_underscore Convert arguments whose names end with _ into quosures automati-
cally

str.Flow 11

Description

The expressions provided for all arguments whose names end with _ are automatically converted
into quosures, and also assigned to a name without the training _. The other arguments are evalu-
ated in an usual way.

Usage

quos_underscore(...)

Arguments
The named arguments provided to be either converted into quosures or evalu-
ated.

Value

An object of class quosures is returned. It can be used directly in tidyeval-aware contexts.

See Also

as.quosure, %>_%

Examples

foo <- function(...)
quos_underscore(...)

foo(x = 1:10, # "Normal” argument
y_ = 1:10, # Transformed into a quosure
Z_ = non_existing_name) # Expressions in quosures are not evaluated
str.Flow Compactly display the content of a Flow object
Description

Print short informative strings about the Flow object and all it contains, plus possibly, inheritance
information.

Usage

S3 method for class 'Flow'
str(
object,
max.level = 1L,
nest.lev = 0oL,
indent.str = paste(rep.int(” ", max(@L, nest.lev + 1L)), collapse = ".."),

12

Arguments

object
max.level

nest.lev

indent.str

See Also

flow

Examples

A Flow object

data(iris)

str.Flow

A Flow object.
The maximum nesting level to use for displaying nested structures.

Used internally for pretty printing nested objects (you probably don’t want to
change default value).

Idem.

Further arguments passed to str() methods of Flow items.

fl <- flow(iris, x = 1:10, var_ = Sepal.Length)

f1l # Shows the

.value contained into f1

str(fl) # Provides compact information about satellite data contained in f1l

Index

'l (quosure), 8
* automatic quosures creation for
non-standard evaluation
qguos_underscore, 10
x class-less objects for better R pipelines
flow, 4
* compactly inform about an object
str.Flow, 11
x display objects hierarchy
graph_flow, 6
* expression encapsulation for non-standard
evaluation
quosure, 8
* pipeline operators and debugging
pipe_operator, 7
+ utilities
flow, 4
graph_flow, 6
pipe_operator, 7
quos_underscore, 10
quosure, 8
str.Flow, 11
.formula (quosure), 8
.quosure (quosure), 8
.unquoted (quosure), 8
.formula (quosure), 8
.3
$.Flow (flow), 4
$<-.Flow (flow), 4
%>.% (pipe_operator), 7
%>_% (pipe_operator), 7
%>.%, 2,7
%>_%,2,4,5,7,10, 11
A .quosure (quosure), 8

+ + +

as.flow (flow), 4
as.quosure, 11
as.quosure (quosure), 8
as.quosure(), 3
as_flow (flow), 4

debug_flow (pipe_operator), 7
debug_flow(), 2

enflow (flow), 4

flow, 4, 6,8, 12
flow(), 2

graph_flow, 6

is.bare_formula (quosure), 8
is.flow (flow), 4

is.formula (quosure), 8
is.quosure (quosure), 8
is_flow (flow), 4

pipe_operator, 7
plot.igraph(), 6
print.unquoted (quosure), 8
proto(), 2,5

quasiquotation, 10

quo(), 8

quos_underscore, 5, 8, 10, 10
quos_underscore(), 3,5
quosure, 8

str.Flow, 5, 11
str.Flow(), 3
svFlow-package, 2

13

	svFlow-package
	._
	flow
	graph_flow
	pipe_operator
	quosure
	quos_underscore
	str.Flow
	Index

