Package 'inferit'

Title: Hypothesis Tests and Statistical Distributions for 'SciViews::R'
Description: Statistical distributions (including their visual representation) and hypothesis tests with rich-formatted tabular outputs for the 'SciViews::R' dialect.
Authors: Philippe Grosjean [aut, cre] , Guyliann Engels [aut]
Maintainer: Philippe Grosjean <[email protected]>
License: MIT + file LICENSE
Version: 0.3.1
Built: 2024-12-26 04:45:00 UTC
Source: https://github.com/SciViews/inferit

Help Index


Hypothesis Tests and Statistical Distributions for 'SciViews::R'

Description

Statistical distributions and hypothesis tests objects with rich-formatted charts and tables.

Important functions


Create and plot density functions for distribution objects

Description

The distribution objects represent one or more statistical distributions. The functions dfun() and geom_funfill(), together with chart() allow to plot them.

Usage

dfun(object, i = 1)

cdfun(object, i = 1)

## S3 method for class 'distribution'
autoplot(
  object,
  n = 500,
  xlim = NULL,
  size = 99.5,
  xlab = "Quantile",
  ylab = if (type == "density") "Probability density" else
    "Cumulative probability density",
  plot.it = TRUE,
  use.chart = FALSE,
  ...,
  type = "density",
  theme = NULL
)

## S3 method for class 'distribution'
chart(data, ..., type = "density", env = parent.frame())

geom_funfill(
  mapping = NULL,
  data = NULL,
  fun,
  from,
  to,
  geom = "area",
  fill = "salmon",
  alpha = 0.5,
  ...
)

Arguments

object

A distribution object, as from the {distributional} package.

i

The distribution to use from the list (first one by default)

n

The number of points to use to draw the density functions (500 by default) of continuous distributions.

xlim

Two numbers that limit the X axis.

size

If ⁠xlim=⁠ is not provided, it is automatically calculated using the size of the CI between 0 and 100 (99.5 by default) for continuous distributions.

xlab

The label of the X axis ("Quantile" by default).

ylab

The label of the Y axis ("Probability density" or "Cumulative probability density" by default).

plot.it

Should the densities be plotted for all the distributions (TRUE by default)?

use.chart

Should chart() be used (TRUE by default)? Otherwise, ggplot() is used.

...

Further arguments to stat_function().

type

The type of plot ("density" by default, or "cumulative").

theme

The theme for the plot (ignored for now).

data

The data frame to use (NULL by default).

env

The environment to use to evaluate expressions.

mapping

the mapping to use (NULL by default.

fun

The function to use (could be dfun(distribution_object)).

from

The first quantile to delimit the filled area.

to

The second quantile to delimit the filled area.

geom

The geom to use ("area" by default).

fill

The color to fill the area ("salmon" by default).

alpha

The alpha transparency to apply, 0.5 by default.

Value

Either a function or a ggplot object.

Examples

library(distributional)
library(chart)
di1 <- dist_normal(mu = 1, sigma = 1.5)
chart(di1) +
  geom_funfill(fun = dfun(di1), from = -5, to = 1)

# With two distributions
di2 <- c(dist_normal(10, 1), dist_student_t(df = 3, 13, 1))
chart(di2) +
  geom_funfill(fun = dfun(di2, 1), from = -5, to = 0) +
  geom_funfill(fun = dfun(di2, 2), from = 2, to = 6, fill = "turquoise3")
chart$cumulative(di2)
# A discrete distribution
di3 <- dist_binomial(size = 7, prob = 0.5)
chart(di3)
chart$cumulative(di3)
# A continuous together with a discrete distribution
di4 <- c(dist_normal(mu = 4, sigma = 2), dist_binomial(size = 8, prob = 0.5))
chart(di4)
chart$cumulative(di4)

Get standard deviation for a distribution objects

Description

The distribution objects represent one or more statistical distributions. The generic functions stddev() returns the standard deviation for these distributions.

Usage

stddev(x, ...)

## Default S3 method:
stddev(x, ...)

## S3 method for class 'distribution'
stddev(x, ...)

Arguments

x

A distribution object, as from the {distributional} package.

...

Further arguments (not used yet).

Value

A numeric vector with one or more standard deviations.

Examples

library(distributional)
n1 <- dist_normal(mu = 1, sigma = 1.5)
n1
class(n1)
family(n1)
mean(n1)
variance(n1)
stddev(n1)

Create a rich-formatted table from an htest object

Description

tabularise() an htest object (into a a flextable) that can be further post-edited..

Usage

## S3 method for class 'htest'
tabularise_default(
  data,
  header = TRUE,
  title = NULL,
  lang = getOption("data.io_lang", "en"),
  show.signif.stars = getOption("show.signif.stars", TRUE),
  ...,
  kind = "ft",
  env = parent.frame()
)

Arguments

data

An htest object

header

If TRUE (by default), add a header to the table

title

If TRUE, add a title to the table header. Default to the same value than header, except outside of a chunk where it is FALSE if a table caption is detected (tbl-cap YAML entry).

lang

The natural language to use. The default value can be set with, e.g., options(data.io_lang = "fr") for French.

show.signif.stars

If TRUE, add the significance stars to the table. The default value is obtained from ⁠getOption("show.signif.stars"")⁠.

...

Additional arguments (unused for now).

kind

The kind of table to produce: "tt" for tinytable, or "ft" for flextable (default).

env

The environment where to evaluate lazyeval expressions (unused for now).

Value

A flextable object you can print in different forms or rearrange with the {flextable} functions.

Examples

data(iris)
iris_cor <- cor.test(iris$Sepal.Length, iris$Sepal.Width)
tabularise::tabularise(iris_cor)

tabularise::tabularise(t.test(x = 1:10, y = 7:20), lang = "fr")