
Package: data.io (via r-universe)
July 15, 2024

Type Package

Version 1.5.1

Title Read and Write Data in Different Formats

Description Read or write data from many different formats (tabular
datasets, from statistic software ...) into R objects. Add
labels and units in different languages.

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>

Depends R (>= 4.2.0)

Imports Hmisc (>= 5.0.1), lifecycle (>= 1.0.3), utils (>= 4.2.0),
readr (>= 2.1.4), rlang (>= 1.1.1), svBase (>= 1.4.0), tibble
(>= 3.2.1), tsibble (>= 1.1.3)

Suggests babynames (>= 1.0.1), datasets (>= 4.2.0), ggplot2 (>=
3.4.2), haven (>= 2.5.2), lme4 (>= 1.1.32), nycflights13 (>=
1.0.2), palmerpenguins (>= 0.1.1), readxl (>= 1.4.2), writexl
(>= 1.4.2), WriteXLS (>= 6.4.0), knitr (>= 1.42), rmarkdown (>=
2.21), spelling (>= 2.2.1), testthat (>= 3.0.0)

Remotes SciViews/svBase

License MIT + file LICENSE

URL https://github.com/SciViews/data.io,

https://www.sciviews.org/data.io/

BugReports https://github.com/SciViews/data.io/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData yes

ByteCompile yes

Config/testthat/edition 3

1

https://github.com/SciViews/data.io
https://www.sciviews.org/data.io/
https://github.com/SciViews/data.io/issues

2 data.io-package

Repository https://sciviews.r-universe.dev

RemoteUrl https://github.com/SciViews/data.io

RemoteRef HEAD

RemoteSha 5b5d92d00288223305f8a2f82a56ac6fe820ec45

Contents
data.io-package . 2
as_dataframe . 3
Datasets . 5
data_example . 6
data_types . 7
labelise . 8
mauna_loa . 10
read . 11
read_write_option . 16
relative_path . 17
urchin_bio . 18
urchin_growth . 19
write . 20
zooplankton . 22

Index 24

data.io-package Read and Write Data in Different Formats

Description

The {data.io} package focuses on reading and writing datasets in different formats in an unified
and convenient way. It can deal with labels and units metadata for variables, translation in different
languages, and even use a sidecar file for preprocessing the dataset automatically. The same features
are also available for a subset of datasets from R packages.

Important functions

• read() is the main function to read data from R packages or files,

• write() is the main function to write data to disk. It is compatible with base::write() but
provides many more features if you indicate type= or use it like write$type().

• labelise() adds a label, and possibly a units attributes to an object, to be used while pretty
printing a table or plot.

as_dataframe 3

as_dataframe Deprecated! Convert objects into dataframes (subclassing tibble) and
check for it.

Description

[Deprecated]

Convert an object into a dataframe and check for it. A dataframe (without dot) is both a data.frame
(with dot, the default rectangular dataset structure in R) and a tibble, the tidyverse equivalence. In
fact, dataframes behave almost completely like a tibble, except for a few details explained in the
details section.

Usage

as_dataframe(x, ...)

as.dataframe(x, ...)

Default S3 method:
as_dataframe(x, tz = "UTC", ...)

S3 method for class 'data.frame'
as_dataframe(x, ..., rownames = "rownames")

S3 method for class 'dataframe'
as_dataframe(
x,
...,
rownames = "rownames",
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

S3 method for class 'list'
as_dataframe(
x,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
...

)

S3 method for class 'matrix'
as_dataframe(x, ..., rownames = "rownames")

S3 method for class 'table'
as_dataframe(x, n = "n", ...)

is_dataframe(x)

4 as_dataframe

is.dataframe(x)

Arguments

x An object to convert to a dataframe.

... Additional parameters.

tz The time zone. Useful for converting ts objects with observations more frequent
than daily.

rownames Name of the column that is prepended to the dataframe with the original row
names (dataframes and tibbles do not support row names). If NULL, row
names are dropped. The inclusion of the rownames column is not done if row
names are trivial, i.e., they equal the number of the rows in the data frame.

.name_repair Treatment for problematic column names. "check.unique" (default value) do
not repair names but make sure they are unique. "unique" make sure names
are unique and non empty. "universal" make names unique and syntactic.
"minimal"do not repair or check (just make sure names exist).

n The name for the column containing the number of items, "n" by default.

Details

TODO: explain difference between dataframes and tibbles here...

Value

A dataframe, which is an S3 object with class c("dataframe", "tbl_df", "tbl", "data.frame").

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

as_tibble(), as.data.frame()

Examples

class(as.dataframe(mtcars))
class(as.dataframe(tibble::tribble(~x, ~y, 1, 2, 3, 4)))

Any object, like a vector
v1 <- 1:10
is_dataframe(v1)
(df1 <- as_dataframe(v1))
is_dataframe(df1)
Check names of an existing dataframe
(as_dataframe(df1, .name_repair = "universal"))
A data.frame with trivial row names
datasets::iris

mailto:phgrosjean@sciviews.org

Datasets 5

as_dataframe(datasets::iris)
A data.frame containing meaningful row names
datasets::mtcars
as_dataframe(datasets::mtcars)
A list
l1 <- list(x = 1:3, y = rnorm(3))
as_dataframe(l1)
A matrix with column and row names
(m1 <- matrix(1:9, nrow = 3L, dimnames = list(letters[1:3], LETTERS[1:3])))
as_dataframe(m1)
A table
set.seed(756)
(t1 <- table(sample(letters[1:5], 50, replace = TRUE)))
as_dataframe(t1)
compare with the base R function:
as.data.frame(t1)

Datasets Labelised versions of various datasets provided by ’data.io’ or other
packages

Description

Use name <- read("data", package = "pkg", lang = "xx") to read these datasets together with
the metadata (labels, units, comments, ...).

Details

From data:

mauna_loa Temperature and atmospheric CO2 at Mauna Loa, Hawai. 5 vars x 768 obs. Time
series of monthly averages from 1955 to 2018.

urchin_bio Sea urchins biometry. 19 vars x 421 obs. Morphometric variables measured on two
populations of sea urchins, incl. one circular variable (maturity).

urchin_growth Sea urchins growth. 3 vars x 7024 obs. Size at age for a cohort of sea urchins
followed over more than 10 years.

zooplankton Zooplankton image analysis. 20 vars x 1262 obs. A training set with 19 measure-
ments made on images of zooplankton and their respective class as attributed by taxonomists.

From datasets:

anscombe Anscombe’s quartet of ’identical’ simple linear Regressions. 8 vars x 11 obs. Artificial
data.

iris Edgar Anderson’s iris data. 5 vars x 150 obs. Morphometry of the flowers of three iris species
(50 for each species).

lynx Annual Canadian lynx trappings 1821–1934. 2 vars x 114 obs. Long (> 1 century) time
series.

6 data_example

trees Black cherry trees measurements. 3 vars x 31 obs. Measurement of tree timber of various
sizes.

From ggplot2:

ggplot2::diamonds Prices of 50,000 round cut diamonds. 10 vars x 53940 obs. Price and other
attributes of 10,000’s of diamonds.

ggplot2::mpg Fuel economy data from 1999 and 2008 for popular cars. 11 vars x 234 obs. Data
are for most popular U.S. market cars only.

From MASS:

crabs Morphological measurements on Leptograpsus crabs. 8 vars x 200 obs. Morphological
measurements of Leptograpsus variegatus crabs, either blue or orange, males and females.

geyser Old Faithful geyser data. 2 vars x 299 obs. Duration and waiting time for eruptions from
August 1 to August 15, 1985.

From nycflights13:

nycflights13::airlines Airlines by their carrier codes. 2 vars x 16 obs.

nycflights13::airports Various metadata about New York city airports. 8 vars x 1458 obs.

nycflights13::flights On-time data for all flights that departed NYC (i.e., JFK, LGA or EWR) in
2013. 19 vars x 336776 obs.

nycflights13::planes Planes metadata. 9 vars x 3322 obs.

nycflights13::weather Hourly meteorological data for JFK, LGA and EWR. 15 vars x 26130 obs.

data_example Get the path to some example datasets in this package

Description

Get the full path to so example datasets included in different formats in the "data.io" package.

Usage

data_example(path)

Arguments

path The subpath to a file inside the "extdata" subdirectory of the "data.io" package.

Value

The path to the file, or "" if it is not found.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

mailto:phgrosjean@sciviews.org

data_types 7

See Also

read()

Examples

data_example("iris.csv")

data_types List recognized file formats (types) for read() and write()

Description

Display information about data types that can read() and write() can use, as well as, the original
functions that are delegated (see they respective help pages for more info and to know which addi-
tional parameters can be used in read() and write()).

Usage

data_types(types_only = FALSE, view = TRUE)

Arguments

types_only If TRUE, only a vector of types is returned, otherwise, a tibble with full speci-
fications is provided.

view If TRUE, the result is "viewed" (displayed in a table in a separate window, if the
user interface allows it, e.g., in RStudio) and returned invisibly. Otherwise, the
results are returned normally.

Details

The function is mainly designed to be used interactively and to provide information about file types
that can be read() or write(). This cannot be done through a man page because this list is dynamic
and other packages could add or change entries there. With view = FALSE, the function can, never-
theless, be also used in a script or a R Markdown/Notebook document.

Value

An tibble with types_only = FALSE, or a character vector.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

read(), write()

mailto:phgrosjean@sciviews.org

8 labelise

Examples

Not run:
data_types()
data_types(TRUE)

End(Not run)
For non-interactive use, specify view = FALSE
data_types(view = FALSE)
data_types(TRUE, view = FALSE)

labelise Set label (and units)

Description

Set the label, as well as the units attributes to an object. The label can be used for better display as
plot axes labels, or as table headers in pretty-formatted R outputs. The units are usually associated
to the label in axes labels for plots. cl() is a shortcut for concatenate (c()) and labelise().

Usage

labelise(x, label, units = NULL, as_labelled = FALSE, ...)

labelize(x, label, units = NULL, as_labelled = FALSE, ...)

Default S3 method:
labelise(x, label, units = NULL, as_labelled = FALSE, ...)

S3 method for class 'data.frame'
labelise(x, label, units = NULL, as_labelled = FALSE, self = TRUE, ...)

cl(..., label = NULL, units = NULL, as_labelled = FALSE)

unlabelise(x, ...)

unlabelize(x, ...)

Default S3 method:
unlabelise(x, ...)

S3 method for class 'data.frame'
unlabelise(x, self = TRUE, ...)

Arguments

x An object.

label The character string to set as label attribute to x.

labelise 9

units The units (optional) as a character string to set for x.

as_labelled Should the object be converted as a labelled S3 object (no by default)? If you
don’t make labelled objects, subsetting the data will lead to a lost of label and
units attributes for all variables. On the other hand, labelled objects are not
always correctly handled by R code.

... Further arguments: items to be concatenated in a vector using c(...) for cl().

self Do we label the data.frame itself (self = TRUE, by default) or variables within
that data.frame (self = FALSE)? In the later case, label= and units= must be
either lists or character vectors of the same length as x, or be named with the
names of several or all x variables.

Details

The same mechanism as the one used in package Hmisc is used here. However, Hmisc always add
the labelled class to an object, while here, this is optional. Setting this class make the object more
nicely printed, and subsettable without loosing these attributes. But it conflicts with a class of the
same name in package haven, used for other purposes. So, here, one can also opt not to set it, using
as_labelled = FALSE.

Value

The x object plus a label attribute, and possibly, a units attribute.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

label(), units()

Examples

Labelise a vector:
x <- 1:10
x <- labelise(x, label = "A suite of integers", units = "cm")
x
or, in a single operation:
x <- cl(1:10, label = "A suite of integers", units = "cm")
x
Not adding the labelled class:
x <- cl(1:10, label = "Integers", units = "cm", as_labelled = FALSE)
x
Unlabelising a labelised object
unlabelise(x)

Labelise a data.frame
iris <- labelise(datasets::iris, "The famous iris dataset")
unlabelise(iris)
but if you indicate self = FALSE, you can labelise variables within the

mailto:phgrosjean@sciviews.org

10 mauna_loa

data.frame (use a list or character vector of same length as x, or a
named list or character vector):
iris <- labelise(iris, self = FALSE, label = list(

Sepal.Length = "Length of the sepals",
Petal.Length = "Length of the petals"
), units = c(rep("cm", 4), NA))

iris <- unlabelise(iris, self = FALSE)

mauna_loa Temperature and atmospheric CO2 at Mauna Loa, Hawai

Description

Monthly averages of temperatures and CO2 concentrations, maximal and minimal monthly temper-
atures at Mauna Loa slope observatory from 1955 to 2018.

Usage

mauna_loa

Format

An object of class mts (inherits from ts, matrix) with 768 rows and 4 columns.

Details

Atmospheric CO2 concentration is mole fraction in dry air, micromol/mol, abbreviated as ppm.
Temperatures are in degree Celsius.

Examples

class(mauna_loa)
head(mauna_loa)
plot(mauna_loa)

Using read(), the dataset becomes an annotated dataframe
(ml_en <- read("mauna_loa", package = "data.io"))
class(ml_en)

Indicating lang = "EN_US" (all uppercase!) also converts temperatures
into degrees Farenheit
(ml_en_us <- read("mauna_loa", package = "data.io", lang = "EN_US"))
Each variable is also labelled:
ml_en$avg_co2

The same in French:
(ml_fr <- read("mauna_loa", package = "data.io", lang = "fr"))
ml_fr$avg_co2

read 11

read Read data in R in different formats

Description

Read and return an R object from data on disk, from URL, or from packages.

Usage

read(
file,
type = NULL,
header = "#",
header.max = 50L,
skip = 0L,
locale = default_locale(),
lang = getOption("data.io_lang", "en"),
lang_encoding = "UTF-8",
as_dataframe = FALSE,
as_labelled = FALSE,
comments = NULL,
package = NULL,
sidecar_file = TRUE,
fun_list = NULL,
hfun = NULL,
fun = NULL,
data,
cache_file = NULL,
method = "auto",
quiet = FALSE,
force = FALSE,
...

)

type_from_extension(file, full = FALSE)

hread_text(file, header.max, skip = 0L, locale = default_locale(), ...)

hread_xls(file, header.max, skip = 0L, locale = default_locale(), ...)

hread_xlsx(file, header.max, skip = 0L, locale = default_locale(), ...)

S3 method for class 'subsettable_type'
x$name

S3 method for class 'read_function_subset'
.DollarNames(x, pattern = "")

12 read

Arguments

file The path to the file to read, or the name of the dataset to get from an R package
(in that case, you must provide the package= argument).

type The type (format) of data to read.

header The character to use for the header and other comments.

header.max The maximum of lines to consider for the header.

skip The number of lines to skip at the beginning of the file.

locale A readr locale object with all the data regarding required to correctly interpret
country-related items. The default value matches R defaults as US English +
UTF-8 encoding, and it is advised to be used as much as possible.

lang The language to use (mainly for comment, label and units), but also for factor
levels or other character strings if a translation exists and if the language is
spelled with uppercase characters (e.g., "FR"). The default value can be set
with, e.g., options(data.io_lang = "fr") for French.

lang_encoding Encoding used by R scripts for translation. They should all be encoded as UTF-8,
which is the default. However, this argument allows to specify a different en-
coding if needed.

as_dataframe Deprecated: now use options(SciViews.as_dtx = as_XXX) to specify if you
want a data.frame (as_dtf), a data.table (as_dtt, by default), or a tibble (as_dtbl).
Do we try to convert the resulting object into a dataframe (inheriting from
data.frame, tbl and tbl_db alias tibble)? If FALSE, no conversion is at-
tempted. Note that now, whatever you indicate, it is always assumed to be FALSE
as part of the deprecation!

as_labelled Are variable converted into ’labelled’ objects. This allows to keep labels and
units when the vector is manipulated, but it can lead to incompatibilities with
some R code (hence, it is FALSE by default).

comments Comments to add in the created object.

package The package where to look for the dataset. If file= is not provided, a list of
available datasets in the package is displayed.

sidecar_file If TRUE and a file with same name as file= + .R is found in the same directory,
it is considered as code to import these data and it is sourced with local =
TRUE, chdir = TRUE and verbose = FALSE. That script must create an object
named dataset, which is the result that is returned by the function. It is advised
to encode this script in UTF-8, which is the default value, but it is possible to
specify a different encoding through the lang_encoding= parameter.

fun_list The table with correspondence of the types, read, and write functions.

hfun The function to read the header (lines starting with a special mark, usually ’#’
at the beginning of the file). This function must have the same arguments as
hread_text() and should return a character string with the first header.max
lines.

fun The function to delegate reading of the data. If NULL (default), The function is
chosen from fun_list.

data A synonym to file= (the name makes more sense when the dataset is loaded
from a package). You cannot use data= and file= at the same time.

read 13

cache_file The path to a local file to use as a cache when file is downloaded (http://, https://,
ftp://, or file:// protocols). If cache_file already exists, data are read from this
cache, except if force = TRUE, see here under. Otherwise, data are saved in
it before being used. If cache_file = NULL (the default), a temporary file is
used and data are read from the Internet every time. This cache mechanism is
particularly useful to provide data associated with a git repository. Put cache_file
in .gitignore and use cache_file= in the code (and force = FALSE). That
way, the data are downloaded once in a freshly cloned repository, and they are
not included in the versioning system (useful for large datasets).

method The downloading method used ("auto" by default), see utils::download.file().

quiet In case we have to download files, do it silently (TRUE) or do we provide feed-
back and a progression bar (FALSE, by default)?

force If TRUE and an URL is provided for file= and a path for cache_file=, then
the content is downloaded all the time, even if the cache file already exists (it
overwrites it). By default, it is FALSE, which is the most useful setting to make
good use of the cache mechanism.

... Further arguments passed to the function fun=.

full Do we return the full extension, like csv.tar.gz (TRUE), or only the main ex-
tension, like csv (FALSE, by default).

x A subsettable_type function.

name The value to use for the type= argument.

pattern A regular expression to list matching names.

Details

read() allows for a unique entry point to read various kinds of data, but it delegates the actual work
to various other functions dispatched across several R packages. See getOption("read_write").

Value

An R object with the data (its class depends on the data being read).

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

data_types(), write(), read_csv()

Examples

Use of read() as a more flexible substitute to data() (can change dataset
name and syntax more similar to read R datasets and datasets from files)
read() # List all available datasets in your installed version of R
List datasets in one particular package
read(package = "data.io")

mailto:phgrosjean@sciviews.org

14 read

Read one dataset from this package, possibly changing its name
(urchin <- read("urchin_bio", package = "data.io"))
Same, but using labels in French
(urchin <- read("urchin_bio", package = "data.io", lang = "fr"))
... and also the levels of factors in French (note: uppercase FR)
(urchin <- read("urchin_bio", package = "data.io", lang = "FR"))

Read one dataset from another package, but with labels and comments
data(iris) # The R way: you got the initial datasets
Same result, using read()
ir2 <- read("iris", package = "datasets", lang = NULL)
ir2 records that it comes from datasets::iris
attr(comment(ir2), "src")
otherwise, it is identical to iris, except is may be a data.table or a
tibble, depending on user preferences
comment(ir2) <- NULL
Force coercion into a data.frame
ir2 <- svBase::as_dtf(ir2)
identical(iris, ir2)
More interesting: you can get an enhanced version of iris with read():
(note that variable names ar in snake-case now!)
(ir3 <- read("iris", package = "datasets"))
class(ir3)
comment(ir3)
ir3$sepal_length
... and you can get it in French too!
(ir_fr <- read("iris", package = "datasets", lang = "fr"))
class(ir_fr)
comment(ir_fr)
ir_fr$sepal_length

Sometimes, datasets are more deeply reworked. For instance, trees has
variables in imperial units (in, ft, and cubic ft), but it is automatically
reworked by read() into metric variables (m or m^3):
data(trees)
head(trees)
(trees2 <- read("trees", package = "datasets"))
comment(trees2)
trees2$volume

Read from a Github Gist (need to specify the type here!)
(ble <- read$csv("http://tinyurl.com/Biostat-Ble"))

Various versions of the famous iris dataset
(iris <- read(data_example("iris.csv")))
(iris <- read(data_example("iris.csv.zip")))
(iris <- read(data_example("iris.csv.gz")))
(iris <- read(data_example("iris.csv.bz2")))
(iris <- read(data_example("iris.tsv")))
(iris <- read(data_example("iris.xls")))
(iris <- read(data_example("iris.xlsx")))
(iris <- read(data_example("iris.rds"))) # Does not tranform into tibble!
#(iris <- read(data_example("iris.syd"))) ##

read 15

#(iris <- read(data_example("iris.csvy"))) ##
#(iris <- read(data_example("iris.csvy.zip"))) ##

A file with an header both in English (default) and in French
(iris <- read(data_example("iris_short_header.csv")))
(iris_fr <- read(data_example("iris_short_header.csv"), lang = "fr"))
Headers are also recognized in xls/xlsx files
(iris_fr <- read(data_example("iris_short_header.xls"), lang = "fr"))

Read a file with a sidecar file (same name + '.R')
(iris <- read(data_example("iris_sidecar.csv"))) # lang = "en" by default
(iris <- read(data_example("iris_sidecar.csv"), lang = "EN")) # Full lang
(iris <- read(data_example("iris_sidecar.csv"), lang = "en_us")) # US (in)
(iris <- read(data_example("iris_sidecar.csv"), lang = "fr")) # French
(iris <- read(data_example("iris_sidecar.csv"), lang = "FR_BE")) # Belgian
(iris <- read(data_example("iris_sidecar.csv"), lang = NULL)) # No labels

Require the feather package
#(iris <- read(data_example("iris.feather"))) # Not available for all Win

Challenging datasets from the readr package
library(readr)
(mtcars <- read(readr_example("mtcars.csv")))
(mtcars <- read(readr_example("mtcars.csv.zip")))
(mtcars <- read(readr_example("mtcars.csv.bz2")))
(challenge <- read(readr_example("challenge.csv"), guess_max = 1001))
(massey <- read(readr_example("massey-rating.txt")))
By default, the type cannot be guessed from the extension
This is a space-separated vaules file (ssv)
(massey <- read(readr_example("massey-rating.txt"), type = "ssv"))
or ...
(massey <- read$ssv(readr_example("massey-rating.txt")))
(epa <- read$ssv(readr_example("epa78.txt"), col_names = FALSE))
(example_log <- read(readr_example("example.log")))
There are different ways to specify columns for fixed-width files (fwf)
See ?read_fwf in package readr
(fwf_sample <- read$fwf(readr_example("fwf-sample.txt"),

col_positions = fwf_cols(name = 20, state = 10, ssn = 12)))

Various examples of Excel datasets from readxl
library(readxl)
(xl <- read(readxl_example("datasets.xls")))
(xl <- read(readxl_example("datasets.xlsx"), sheet = "mtcars"))
(xl <- read(readxl_example("datasets.xlsx"), sheet = 3))
Accomodate a column with disparate types via col_type = "list"
(clip <- read(readxl_example("clippy.xls"), col_types = c("text", "list")))
(clip <- read(readxl_example("clippy.xlsx"), col_types = c("text", "list")))
tibble::deframe(clip)
Read from a specific range in a sheet
(xl <- read(readxl_example("datasets.xlsx"), range = "mtcars!B1:D5"))
(deaths <- read(readxl_example("deaths.xls"), range = cell_rows(5:15)))
(deaths <- read(readxl_example("deaths.xlsx"), range = cell_rows(5:15)))
(type_me <- read(readxl_example("type-me.xls"), sheet = "logical_coercion",

16 read_write_option

col_types = c("logical", "text")))
(type_me <- read(readxl_example("type-me.xlsx"), sheet = "numeric_coercion",

col_types = c("numeric", "text")))
(type_me <- read(readxl_example("type-me.xls"), sheet = "date_coercion",

col_types = c("date", "text")))
(type_me <- read(readxl_example("type-me.xlsx"), sheet = "text_coercion",

col_types = c("text", "text")))
(xl <- read(readxl_example("geometry.xls"), col_names = FALSE))
(xl <- read(readxl_example("geometry.xlsx"), range = cell_rows(4:8)))

Various examples from haven
library(haven)
haven_example <- function(path)

system.file("examples", path, package = "haven", mustWork = TRUE)
(iris2 <- read(haven_example("iris.dta"))) # Stata v. 8-14
(iris2 <- read(haven_example("iris.sav"))) # SPSS, TODO: labelled -> factor?
(pbc <- read(data_example("pbc.por"))) # SPSS, POR format
(iris2 <- read$sas(haven_example("iris.sas7bdat"))) # SAS file
(afalfa <- read(data_example("afalfa.xpt"))) # SAS transport file

Note that where completion is available, you have a completion list of file
format after typing read$<tab>

read_write_option Define default read/write options and add items to it

Description

Define the functions that read() or write() must call to import or export data for the different types
(formats).

Usage

read_write_option(new_type)

Arguments

new_type A data.frame with four columns: type, read_fun, read_header and write_fun
containing each a single character string or NA. type is the usual extension
for this type of file, e.g., png for PNG images, read_fun, read_header and
write_fun are character strings with "pkg::fun" format ("pkg" is the package
containing the function and "fun" is the function name), or just "fun" if the
function is visible on the search path.

Value

The data.frame with all known formats is returned invisibly. The same data.frame is also saved in
the read_write`` option, and can be retrieved directly with getOption("read_write")‘.

relative_path 17

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

read(), getOption()

Examples

The default options
(read_write_option())
To add a new type:
tail(read_write_option(data.frame(type = "png", read_fun = "png::readPNG",

read_header = NA, write_fun = "png::writePNG", comment = "PNG image")))

relative_path Calculate path relative to a reference directory

Description

After normalizing both file and dir, try to find a common ancestor directory to build a path for
file relative to dir.

Usage

relative_path(file, dir = getwd())

Arguments

file A single string with the path to a file or directory to transform as relative.

dir A single string with the "reference" directory (by default, the directory provided
by getwd().

Value

A single character string with the relative path, or file unmodified if file is totally unrelated to
dir.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

getwd(), normalizePath()

mailto:phgrosjean@sciviews.org
mailto:phgrosjean@sciviews.org

18 urchin_bio

Examples

relative_path("/Users/me/project/file.txt", "/Users/me/project")
relative_path("/Users/me/project/subdir/file.txt", "/Users/me/project")
relative_path("/Users/me/file.txt", "/Users/me/project")
relative_path("/Users/me/subdir/file.txt", "/Users/me/project")
relative_path("/Users/file.txt", "/Users/me/project")
relative_path("/Users/subdir1/subdir2/file.txt", "/Users/me/project")
relative_path("/Unrelated/file.txt", "/Users/me/project")

relative_path("file.txt", "/Users/me/project")
relative_path("~/file.txt", "/Users/me/project")
relative_path("./file.txt", "/Users/me/project")
relative_path(file.path(getwd(), "data.io", "file.txt"))

urchin_bio Sea urchins biometry

Description

Various measurement on Paracentrotus lividus sea urchins providing from fishery (Brittany, France),
or from a sea urchins farm in Normandy.

Usage

urchin_bio

Format

A data frame with 19 variables:

origin A factor with two levels: "Culture", and "Fishery".

diameter1 Diameter (in mm) of the test measured at the ambitus (its widest part).

diameter2 A second diameter (in mm) measured at the ambitus, perpendicular to the first one.
The idea here is to calculate the average of diameter1 and diameter2 in order to eliminate
the effect of possible slight departure from a nearly circular ambitus.

height The height of the test (in mm), measured from month to anus, thus, orthogonally to the two
diameters.

buoyant_weight Weight (in g) of the sea urchin immersed in seawater.

weight Weight (in g) of the whole animal.

solid_parts Weight (in g) of the animal after draining its coelomic fluid out of the test.

integuments Weight (in g) of the sea urchin after taking out the whole content of the test (coelomic
fluid, digestive tract and gonads.

dry_integuments Dry weight (in g) of the integuments.

digestive_tract Weight (in g) of the digestive tract, including its content.

urchin_growth 19

dry_digestive_tract Dry weight (in g) of the digestive tract and its content.

gonads Weight (in g) of the gonads.

dry_gonads Dry weight (in g) of the gonads.

skeleton Weight of the skeleton (g), calculated as the sum of lantern + test + spines.

lantern Dry weight (in g) of the lantern (the jaw and teeth of the sea urchin).

test Dry weight (in g) of the calcareous part of the test.

spines Dry weight (in g) of calcareous parts of the spines.

maturity Gonads maturity index (integer), measured on a scale of 3 states: state 0 means the
gonad is absent or spent, state 1 means it is growing but not mature, and state 2 means the
gonad is mature. This should be treated as a circular variable, since the reproductive cycle is
0 -> 1 -> 2 -> 0 (spawning).

sex When it is possible, the sex of the animal is determined by visual inspection of the gonads
(factor with levels "F" and "M").

A stratified sample was performed to make sure all size classes (from 5 to 5 mm in test diameter)
from each sub-population are equally represented in the dataset. Hence, the size or weight-classes
distributions among each population cannot be studied with this dataset. However, those data are
more suitable to explore allometric relationships between body measurements and/or body parts of
the sea urchins over the whole size range.

For further details on the farming of these sea urchins, see here.

urchin_growth Sea urchins growth

Description

Size at age for a cohort of farmed sea urchins, Paracentrotus lividus.

Usage

urchin_growth

Format

An object of class data.frame with 7024 rows and 3 columns.

Details

The same cohort of farmed sea urchins being measured at various time intervals, the observations
are not completely independent from each other: the same individuals are repeatedly measured here.
As the sea urchins are not individually tagged, it is not possible to track them from one measurement
to the other. However, the whole dataset is representative of the growth, and spreading of growth in
a single cohort. Also, mortality could be derived from the number of measurements made at each
time period, since all the individuals still alive are measured (no sub-sampling).

https://www.researchgate.net/publication/280021206_Land-based_closed-cycle_echiniculture_of_Paracentrotus_lividus_Lamarck_Echinoidea_Echinodermata_A_long-term_experiment_at_a_pilot_scale

20 write

Examples

library(ggplot2)
ggplot(urchin_growth, aes(age, diameter)) +

geom_jitter(alpha = 0.2) +
xlab(label(urchin_growth$age, units = TRUE)) +
ylab(label(urchin_growth$diameter, units = TRUE)) +
ggtitle("Growth of a cohort of sea urchins")

write Write data from R in files in different formats

Description

Write R data into a file, in different formats.

Usage

write(
data,
file = "data",
ncolumns = if (is.character(data)) 1 else 5,
append = FALSE,
sep = " ",
type = NULL,
fun_list = NULL,
x,
...

)

S3 method for class 'write_function_subset'
.DollarNames(x, pattern = "")

Arguments

data An object to write in a file. The accepted class depends on what the delegated
function expects (in many cases, a data.frame or tibble is just fine). If type
is not provided, a data.frame is not suitable because only an atomic vector can
be provided. Give a matrix instead, if you want to write tabular data, or provide
type = "txt" for instance.

file The path to the file to write to. If type is not provide, a connection, or a character
string naming the file to write to. If ""``, print to the standard output connection. If it is "|cmd", the output is piped to the command given by cmd‘.

ncolumns The number of columns to write the data in when type is provided, this is by-
passed.

append If TRUE and type is not provided, the data are appended to the connection.
sep A string used to separate columns. Using sep = "\t" gives tab delimited output;

default is " " when type is not provide, or the default provided by the delegated
function if this parameter is present there.

write 21

type The type (format) of data to read.

fun_list The table with correspondence of the types, read, and write functions.

x Same as data=, for compatibility with base::write(). Please, do not use both
data= and x= as the same time, or an error will be generated.

... Further arguments passed to the write function, when type is explicitly pro-
vided.

pattern A regular expression to list matching names.

Details

This function is designed to be fully compatible with base::write(), while allowing to specify
type also, and get a more interesting behavior in this case. Hence, when type is not provided,
either with write(type = ...), or write$...(), the default code is used and a plain text file wit
fields separated by spaces (be default) is written. When type is provided, then the exportation is
delegated to specific functions (see data_types()) to write the data in different formats.

Value

data is returned invisibly (on the contrary to base::write() which returns NULL).

Author(s)

Philippe Grosjean phgrosjean@sciviews.org

See Also

data_types(), read(), write_csv(), base::write()

Examples

Always specify type to delegate to more sophisticated functions
(type = NULL explicitly indicated meaning: "guess from file extension")
urchin <- read("urchin_bio", package = "data.io")
write(urchin, "urchin_temporary.csv", type = NULL)
To use a format more easily readable by Excel
write(urchin, "urchin_temporary.csv", type = "xlcsv")
... equivalently (and more compact)
write$xlcsv(urchin, "urchin_temporary.csv")
Tidy up
unlink("urchin_temporary.csv")

Write in Excel format
write$xlsx(urchin, "urchin_temporary.xlsx")
Tidy up
unlink("urchin_temporary.xlsx")

Use base::write() code to output atomic vectors (and matices) in text files
when you don't specify type=
mat1 <- matrix(1:12, nrow = 4)
To get a similar presentation in the file, you have to do:

mailto:phgrosjean@sciviews.org

22 zooplankton

write(t(mat1), "my_temporary_data.txt", ncolumns = 3)
file.show("my_temporary_data.txt")
Tidy up
unlink("my_temporary_data.txt")
rm(mat1)

zooplankton Zooplankton image analysis

Description

Various features measured by image analysis with the package zooimage and ImageJ on samples
of zooplankton originating from Tulear, Madagascar. The taxonomic classification is also provided
in the class variable.

Usage

zooplankton

Format

A data frame with 19 variables:

ecd The "equivalent circular diameter", the diameter of a circle with the same area as the particle
(in mm).

area The area of the particle on the image (in mm^2).

perimeter The perimeter of the particle (in mm).

feret The Feret diameter, that is, the largest measured diameter of the particle on the image (mm).

major The major axis of the ellipsoid matching the particle (mm).

minor The minor axis of the same ellipsoid (mm).

mean The mean value of the gray levels calibrated in optical density (OD), thus, unitless.

mode The most frequent gray level in that particle in OD.

min The most transparent part in OD.

max The most opaque part in OD.

std_dev The standard deviation of the OD distribution inside the particle.

range Transparency range as max - min.

size The mean diameter of the particle, as the average of minor and major (mm).

aspect Aspect ratio of the particle as minor/major.

elongation The area divided by the area of a circle of the same perimeter of the particle.

compactness sqrt((4/pi) * area) / major.

transparency 1 - (ecd - size).

circularity 4pi(area / perimeter^2).

zooplankton 23

density Density integrate by the surface covered by each gray level, i.e. O.D., inside the particle.

class The classification of this particle. 17 classes are made. Note that Copepods are Calanoid
+ Cyclopoid + Harpactivoid + Poecilostomatoid and they represent the most abundant
zooplankton at sea.

This is a typical training set used to train a plankton classifier with machine learning algorithms.
Organisms originate from various samples (different seasons, depth, etc. to take the variability into
account). However, the abundance of the different classes do not match abundance found in each
sample, i.e., rare classes are over-represented in this training set. Only zooplankton classes are
present in the dataset. Full data also contains classes for phytoplankton, marine snow, etc. Take
care that several variables are correlated!

Source

Grosjean, Ph & K. Denis (2004). Supervised classification of images, applied to plankton samples
using R and ZooImage. Chap.12 of Data Mining Applications with R. Zhao, Y. & Y. Cen (eds).
Elsevier. Pp 331-365. https://doi.org/10.1016/C2012-0-00333-X.

Examples

table(zooplankton$class)
library(ggplot2)
ggplot(zooplankton, aes(circularity, transparency, color = class)) +

geom_point()

Index

∗ convert objects
as_dataframe, 3

∗ datasets
mauna_loa, 10
urchin_bio, 18
urchin_growth, 19
zooplankton, 22

∗ get package directory
data_example, 6

∗ labeling objects
labelise, 8
read_write_option, 16

∗ list file types that can be read or write
data_types, 7

∗ read and import data
read, 11

∗ relative paths
relative_path, 17

∗ utilities
as_dataframe, 3
data_example, 6
data_types, 7
labelise, 8
read, 11
read_write_option, 16
relative_path, 17
write, 20

∗ write and export data
write, 20

.DollarNames.read_function_subset
(read), 11

.DollarNames.write_function_subset
(write), 20

$.subsettable_type (read), 11

anscombe, 5
as.data.frame(), 4
as.dataframe (as_dataframe), 3
as_dataframe, 3
as_tibble(), 4

base::write(), 2, 21

cl (labelise), 8
crabs, 6

data.io-package, 2
data_example, 6
data_types, 7
data_types(), 13, 21
Datasets, 5

getOption(), 17
getwd(), 17
geyser, 6
ggplot2::diamonds, 6
ggplot2::mpg, 6

hread_text (read), 11
hread_xls (read), 11
hread_xlsx (read), 11

iris, 5
is.dataframe (as_dataframe), 3
is_dataframe (as_dataframe), 3

label(), 9
labelise, 8
labelise(), 2
labelize (labelise), 8
lynx, 5

mauna_loa, 5, 10

normalizePath(), 17
nycflights13::airlines, 6
nycflights13::airports, 6
nycflights13::flights, 6
nycflights13::planes, 6
nycflights13::weather, 6

read, 11

24

INDEX 25

read(), 2, 7, 16, 17, 21
read_csv(), 13
read_write_option, 16
relative_path, 17

trees, 6
type_from_extension (read), 11

units(), 9
unlabelise (labelise), 8
unlabelize (labelise), 8
urchin_bio, 5, 18
urchin_growth, 5, 19
utils::download.file(), 13

write, 20
write(), 2, 7, 13
write_csv(), 21

zooplankton, 5, 22

	data.io-package
	as_dataframe
	Datasets
	data_example
	data_types
	labelise
	mauna_loa
	read
	read_write_option
	relative_path
	urchin_bio
	urchin_growth
	write
	zooplankton
	Index

