Package: aurelhy (via r-universe)

July 12, 2024
Type Package
Version 1.0.9
Date 2023-04-04
Title Hydrometeorological Interpolation

Description Hydrometeorological interpolation using the AURELHY
method.

Maintainer Philippe Grosjean <phgrosjean@sciviews.org>
Depends R (>=2.10.0)

Imports stats, graphics, sp, gstat

Suggests shapefiles, svUnit

License GPL-2

URL https://github.com/SciViews/aurelhy

BugReports https://github.com/SciViews/aurelhy/issues
LazyLoad yes

NeedsCompilation no

#Roxygen list(markdown = TRUE)

#RoxygenNote 7.1.0

#VignetteBuilder knitr

Encoding UTF-8

Language en-US

Repository https://sciviews.r-universe.dev

RemoteUrl https://github.com/SciViews/aurelhy
RemoteRef HEAD

RemoteSha 20dbbd38406faf16190244fc358d42b929a6c656

https://github.com/SciViews/aurelhy
https://github.com/SciViews/aurelhy/issues

2 aurelhy-package

Contents
aurelhy-package oL L 2
aurelhy . . . oL 3
aurelhy-utilities L 8
auremask oL L e 10
GEOMAL . .« . vt v v e 12
GEOPOINES . . . o v vt i e e e e e e e e e e e e e e e e e e 16
geoshapes L e e 17
mbord e 19
mmask e 19
IMOTOCCO .+« « v v v e e e e et e e e e e e e e e e e e e 20
MPEL . . v o e e e e e e e e e e e e e e e e e e e 20
MIAIN . . . oo ot e e e e e e e e e e e 21
mseadist e 21
unitTests.aurelhy 22

Index 23

aurelhy-package Hydrometeorological Interpolation
Description

Hydrometeorological interpolation using the AURELHY method.

Details
Package: aurelhy
Title: Hydrometeorological Interpolation
Type: Package
Version: 1.0-7
Date: 2015-07-16
Authors@R: c(person("Philippe", "Grosjean", role = c¢("aut", "cre"), email = "phgrosjean @sciviews.
URL: https://github.com/phgrosjean/aurelhy
Depends: sp, gstat
Suggests: shapefiles
License: GPL-2
LazyLoad: yes
Encoding: UTF-8

Author: Philippe Grosjean [aut, cre]
Maintainer: Philippe Grosjean <phgrosjean@sciviews.org>

aurelhy 3

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

aurelhy Create an ’aurelhy’ object that contains required data to perform AU-

RELHY interpolation

Description

An ’aurelhy’ object contains principal components calculated after the various variables describing
the landscape, as well as other useful descriptors. Use the predict() method to interpolate some
data with the AURELHY method.

Usage

aurelhy(geotm, geomask, landmask = auremask(), x@ = 30, y0 = 30, step = 12,
nbr.pc = 10, scale = FALSE, model = "data ~ .", vgmodel = gstat::vgm(1, "Sph”, 10,
add.vars = NULL, var.name = NULL, resample.geomask = TRUE)

D,

S3 method for class 'aurelhy'
print(x, ...)

S3 method for class

"aurelhy'’

plot(x, y, main = "PCA on land descriptors”, D)

S3 method for class 'aurelhy'

points(x, pch = ".", ...)

S3 method for class 'aurelhy'

summary(object, ...)

S3 method for class 'aurelhy'

update(object, nbr.pc, scale, model, vgmodel, ...)

S3 method for class 'aurelhy'

predict(object, geopoints, variable, v.fit = NULL, ...)

S3 method for class

'predict.aurelhy’

print(x, ...)

S3 method for class 'predict.aurelhy'
summary (object, ...)

S3 method for class 'predict.aurelhy'
plot(x, y, which =1, ...)

S3 method for class 'aurelhy'
as.geomat(x, what = "PC1", nodata = NA, ...)

S3 method for class
as.geomat(x,

what = c("Interpolated”, "Predicted”, "KrigedResiduals”

nodata = NA,...)

'predict.aurelhy’

, "KrigeVariance”),

Arguments

geotm

geomask

landmask

X0

Y
step

nbr.pc

scale

model

vgmodel

add.vars

var.name

aurelhy

a terrain model ("geotm’ object) with enough resolution to be able to calculate
all landscape descriptors (use print() or plot() methods of an ’auremask’
object used to calculate landscape descriptors to check your terrain model is
dense enough).

a “geomask’ object with same resolution and coverage of the ’geotm’ object or
the final interpolation grid (with resample.geomask = FALSE), and indicating
which points should be considered for the interpolation (note that your terrain
model must be larger than the targetted area by, at least, maximum distance of
the mask in all directions in order to be able to calculate landscape descriptors
for all considered points).

an "auremask’ object that defines the window of analysis used around each point
ot calculate its landscape descriptors.

shift in X direction (longitude) where to consider the first point of the interpola-
tion grid (note that interpolation grid must be less dense or equal to the terrain
model grid, depending on the mask used).

shift in Y direction (latitude) for the first point of the interpolation grid.

resolution of the interpolation grid, i.e., we keep one point every step points
from the original grid of the terrain model for constructing the interpolation
grid. step must be a single integer larger or equal to one (may be equal to one
only with rectangular ’auremask’ objects).

number of PCA’s principal components to keep in the interpolation. This is the
initial value; the example show you how you can change this after the *aurelhy’
object is calculated.

should we scale the landscape descriptors (variance = 1) before performing the
PCA? If scale = FALSE (by default), a PCA is run on the variance-covariance
matrix (no scaling), otherwise, the PCA is run on the correlation matrix.

a formula describing the model used to predict the data. The left-hand side of
the formula must always be ’data’ and the right-hand considers all predictors
spearated by a plus sign. To use all predictors, specify data ~ . (by default).

the variogram model to fit, as defined by the gstat: : vgm() function of the gstat
package

additional variable(s) measured at the same points as the geotm object, or the
final interpolation grid. They will be used as additional predictors. The example
show you how you can add or remove such variables after the aurelhy’ object
is calculated. If NULL (by default), no additional variables will be used.

if add. vars is a ’geomat’ object, you can give the name you want to use for this
predictor here.

resample.geomask

do we resample the geomask using x0, y@ and step to get the final mask of
calculated points? If TRUE (by default), geomask should have the same grid as
geotm. Otherwise, the geomask must exactly match the points where aurelhy
should perform the interpolation. The default value allows for a backward-
compatible behaviour of the function (aurelhy version =< 1.0-2).

aurelhy

main

pch

object
geopoints
variable

v.fit

which
what

nodata

Details

an ’aurelhy’ or *predict.aurelhy’ object, depending on the method invoked

a ’geopoints’ object to create a plot best depicting the interpolation process, or
nothing to just plot the interpolation grid.

the main title of the graph

non

the symbol to use for plotting points. The default value, pch = ". " prints a small
(usually one pixel size) square

an “aurelhy’ object
a ’geopoints’ object with data to be interpolated.
the name of the variable in the ’geopoints’ object to interpolate

the fitted variogram model used to krige residuals. If NULL (by default), a fitted
model for the variogram is calculated, starting from the model provided in the
“aurelhy’ object, 'vgm’ slot. If FALSE, residuals are not kriged (useful, e.g., to
save calculation time when one look for best predictors in the regression)

which graph to plot
what is extracted as a geomat’ object
the code used to represent missing data in the ’geomat’ object

further arguments passed to the function

aurelhy() creates a new ’aurelhy’ object. The object has print() and plot() methods for further
diagnostics. You should use the predict() method to perform the AURELHY interpolation on
some data. The "aurelhy’ object is also easy to save for further reuse (it is designed so that the most
time-consumming operations are done during its creation; so, it is supposed to be generated only
once and reused for different interpolations on the same terrain model).

Value

An ’aurelhy’ object with all information required to perform an AURELHY interpolation with any

’geopoints’ data.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

Source

Benichou P, Le Breton O (1987). Prise en compte de la topographie pour la cartographie des champs
pluviometriques statistiques. La Meteorologie, 7:23-34.

See Also

geotm, auremask

6 aurelhy

Examples

Create an aurelhy object for the Morocco terrain data
data(morocco) # The terrain model with a grid of about 924x924m

data(mbord) # A shape with the area around Morocco to analyze
data(mmask) # A 924x924m grid with a mask covering territory to analyze
data(mseadist) # The distance to the sea for territory to analyze
data(mrain) # Rain data measured at 43 stations to be interpolated

Create a map with these data

image(morocco) # Plot the terrain model

grid()

lines(mbord, col = "red"”) # Add borders of territory to analyze in red

Make sure we use all the stations from mrain in the geomask
mmask2 <- add.points(mmask, mrain)

Now, create an aurelhy object with landscape description, using the

first ten PCs, plus the distance to the sea (mseadist) for prediction

Use a default radial window of analysis of 26km as maximum distance

and an interpolation grid of 0.1x@.1degrees (roughly 11x11km)

The variogram model is kept simple here, see ?gstat::vgm for other choices

Be patient... this takes a little time to calculate!

maurelhy <- aurelhy(morocco, mmask2, auremask(), x@ = 30, y@ = 54, step = 12,
scale = TRUE, nbr.pc = 10, vgmodel = gstat::vgm(100, "Sph", 1, 1),

add.vars = mseadist, var.name = "seadist")
maurelhy
points(maurelhy) # Add the interpolated points on the map
points(mrain, col = "red") # Add location of weather stations in red

Diagnostic of the PCA on land descriptors
summary (maurelhy)
plot(maurelhy)

Interpolate 'rain' variable on the considered territory around Morocco

Since we do not want negative values for this variable and it is log-normally
distributed, we will interpolate logl@(rain) instead

mrain$logRain <- logl@(mrain$rain)

pmrain <- predict(maurelhy, mrain, "logRain")

pmrain

Diagnostic of regression model

summary(pmrain) # Significant predictors at alpha = 0.01 are x, y, PC3, PC6 and PC7
one could simplify the model as data ~ x + y + PC3 + PC6 + PC7

but it is faster to keep the full model for final interpolation

when we are only interested by the final interpolation or when processing

is automated...

Any of the predictors can be extracted from maurelhy as a geomat object

for further inspection. For instance, let's look at PC3, PC6 and PC7 components
persp(as.geomat(maurelhy, "PC3"), expand = 50)

persp(as.geomat(maurelhy, "PC6"), expand = 50)

persp(as.geomat(maurelhy, "PC7"), expand = 50)

% o

aurelhy

plot(pmrain, which = 1) # Residuals versus fitted (how residuals spread?)
plot(pmrain, which = 2) # Normal Q-Q plot of residuals (residuals distribution)
plot(pmrain, which = 3) # Best graph to look at residuals homoscedasticity
plot(pmrain, which = 4) # Cook's distance of residuals versus observation
plot(pmrain, which = 5) # Residuals leverage: are there influencial points?
Map of predicted values
filled.contour(as.geomat(pmrain, "Predicted”), asp =1,

color.palette = terrain.colors, main = "Values predicted by the linear model”)

Residuals kriging diagnostic
plot(pmrain, which = 6) # Semi-variogram and adjusted model
filled.contour(as.geomat(pmrain, "KrigedResiduals"), asp =1,

color.palette = terrain.colors, main = "Kriged residuals")
filled.contour(as.geomat(pmrain, "KrigeVariance"), asp =1,
color.palette = terrain.colors, main = "Kriged residuals variance")

As we can expect, kriging variance is larger in the south/south-west part
where density of stations is low

AURELHY interpolation diagnostic plots

Graph showing the importance of predicted versus kriged residuals for
all observations

plot(pmrain, which = 7) # Model prediction and kriged residuals

Extract interpolated log(rain) and transform back into rain (mm)
geomrain <- as.geomat(pmrain)
geomrain <- 10*geomrain

How is interpolated rain distributed?
range(geomrain, na.rm = TRUE)
range(mrain$rain)

Ooops! We have some very high values! How many?
sum(geomrain > 1000, na.rm = TRUE)

This is probably due to a lack of data at high altitudes
Let's truncate them to 1000 for a better graph
geomrain[geomrain > 1000] <- 1000

... and plot the result

image(geomrain, col = topo.colors(12))

contour(geomrain, add = TRUE)

lines(mbord, col = "red")

points(mrain, col = "red")

A better plot for these interpolated rain data

filled.contour(coords(geomrain, "x"), coords(geomrain, "y"), geomrain,
asp = 1, xlab = "Longitude”, ylab = "Latitude”,
main = "AURELHY interpolated rain data”, key.title = title(sub = "Rain (mm)\n\n"),
color.palette = colorRampPalette(c("red”, "gray”, "blue"), bias = 2))

One can experiment different interpolation parameters using update()

Suppose we (1) don't want to scale PCs, (2) to keep only first 7 PCs,

(3) we want an upgraded linear model like this:

data <- a.x + b.y + c.z + d.PC3 + e.PC6 + f.PC7 + g.seadist + h.seadist”2 + i

8 aurelhy-utilities

and (4) we want a Gaussian model for the semi-variogram
(note that one can also regress against seadist2 <- seadist”*2), just do:
maurelhy2$seadist2 <- maurelhy$seadist”2
Even with all these changes, you don't have to recompute maurelhy,
just update() it and the costly steps of calculating landscape descriptors
are reused (not the use of I() to protect calcs inside a formula)!
maurelhy? <- update(maurelhy, scale = FALSE, nbr.pc = 7,
model = data ~ x + y + z + PC3 + PC6 + PC7 + seadist + I(seadist”2),
vgmodel = gstat::vgm(100, "Gau", 1, 1))
maurelhy?

E T T S

Diagnostic of the new PCA on land descriptors without scaling
summary (maurelhy?)
plot(maurelhy?2)

Interpolate with the new parameters
pmrain2 <- predict(maurelhy2, mrain, "logRain")
summary (pmrain2)

A couple of graphs

plot(pmrain2, which = 1) # Residuals versus fitted (how residuals spread?)
plot(pmrain, which = 6) # Semi-variogram and adjusted model

plot(pmrain2, which = 7) # Model prediction and kriged residuals

#... Explore as much as you like until you find the set of parameters that suits you!
aurelhy-utilities Various utilities functions for AURELHY
Description

These functions manipulate geographical coordinates in various ways to optimize computation of
the AURELHY method.

Usage

deg.lat(latitude)

deg.lon(latitude)

polar.coords(geomat, x, y, maxdist)
match.coords(points, table, tol = 0.002)

coords(x, ...)

resample(x, ...)

add.points(x, ...)

S3 method for class 'geomask'
add.points(x, geopoints, ...)

dist2sea(geotm)

aurelhy-utilities 9

Arguments
latitude the latitude in decimal degrees
geomat a ’geomat’ object
X X coordinate of the reference point for polar. coords(), or a correct object for
the other functions
y Y coordinate of the reference point
maxdist maximum distance to consider in km. All points whose distance from the refer-
ence point is larger are not considered in the calculation
points a list or data frame with X and Y coordinates of the points to match to the
reference points (in decimal degrees, for instance)
table a similar list or data frame with X(ref) and Y(ref) coordinates of the reference
points to be matched (in the same units as for points)
tol the maximum tolerance in X and Y units to consider points are matching, that
is, X +/- tol = X(ref) and Y +/- tol = Y(ref)
further arguments passed to the method
geopoints a geopoints object from which we want to add corresponding points in a geo-
mask
geotm a geotm object
Details

deg.lat() and deg.lon() provide the length of one degree in, respectively, latitude and longi-
tude in km, given the corresponding latitude in decimal degrees. The ellipsoid defined in WGS84
model is used for these calculations. polar.coords() calculates polar coordinates of points.
match.coords() selects points with matching coordinates, given a tolerance distance between the
reference points (i.e., from a geotm grid, using coords (my_geotm, "xy")) and the points to match
(stations). coords() is a generic function that extracts geographical coordinates from one object in
different fashions. resample is a generic function to resample a grid (’geomat’ object). add.points
add points from a geopoints object in a geomask. dist2sea() calculate the distance of points in a
geotm object to the sea.

Value

deg.lat() and deg.lon() return the length of one degree in km. polar.coords() returns a data
frame with ’angle’ in rad and ’dist’(ance) in km for the reference point to each point in the grid,
within *maxdist’. There is also a ’geomat’ attribute containing the window of the initial ’geomat’
object containing the considered points.

match.coords() returns a vector of logical of the same length as the number of colunms in the
points data frame (that must contain ’x’ and ’y’ columns with coordinates of points to be matched).

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>, and Francois Delobel for dist2sea()

10 auremask

See Also

geomat, auremask

Examples

Size of one degree in latitude and longitude, given the latitude in decimal degrees
deg.lat(c(@, 15, 30, 45, 60, 75, 90))

110.574 110.649 110.852 111.132 111.412 111.618 111.694

deg.lon(c(@, 15, 30, 45, 60, 75, 90))

111.320 107.550 96.486 78.847 55.800 28.902 0.000

auremask Create and manipulate a window of analysis for landscape descriptors
used in AURELHY

Description

An AURELHY window of analysis ("auremask’ object) specifies the regions relative to the point
that define the various variables describing the landscape.

Usage

auremask(type = "radial”, dist = c(1, 6, 11, 16, 21, 26),
angles = @0:7 x pi/4 + 0.01, n = 11, keep.origin = FALSE)

S3 method for class 'auremask'

print(x, geomat, ...)
S3 method for class 'auremask'
plot(x, vy, ...)
Arguments
type the type of window, either "radial” (by default), or "rectangular” as in the

initial version of the AURELHY method.

dist A vector of distances (in km) to consider in the window for the "radial” win-
dow, or the distance to consider between two grid points for a "rectangular”
window (in this case, if you provide several distances, only the smallest one will
be considered)

angles A vector of angles in radians to use to construct a "radial” window. This
argument is ignored for "rectangular” window. Avoid to use angles parallels
to the grid, like O or pi/4, because you will have points going into one or the
other sector of your window of analysis, depending on rounding of the numbers
in the floating-point calculations! A slight shift angle (0.01, by default) avoids
this unstability

auremask 11

n The number of grid points in latitude and longitude to use for a "rectangular”
window. For instance, if n = 11, the window will be made of 11*11 = 121 points
(minus one if keep.origin is FALSE). This argument is ignored for a "radial”

window.

keep.origin Is the origin where the window is centered considered as one point of the grid,
or not (by default, not, as in the original implementation of the AURELHY
method)

X An ’auremask’ object

geomat A reference grid, as a “geomat’ object against which the window of analysis is
tested (print or plot the number of points that are located in each sector of the
window)

y Same as geomat

further arguments passed to the function

Details

auremask () creates a new window of analysis. The object has print() and plot() methods.

Value

An ’auremask’ object with all information required to mask a ’geotm’ object (terrain model) for
creating landscape variables required by the AURELHY method.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

polar.coords, geomat

Examples

Default window of analysis

am <- auremask()

am

Get an example terrain model and apply the window on it

data(morocco)

plot(am, morocco)

Further statistics are displayed with print() if a grid is provided too
print(am, morocco)

12 geomat

geomat A geomat, geotm or geomask object for AURELHY

Description

Geomat are matrices of geographically referenced data. These are essentially georeferenced rect-
angular, regular grids of points. Data can be numeric (reals), integer, or logical (booleans). Objects
geotm’ are special *geomat’ matrices containing always integers and representing terrain models.
Objects *geomask’ are also special *geomat’ that only contain logical values. They are mainly used
to define a mask on top of a grid (which points to consider and which ones to eliminate from a
calculation).

Usage

geomat(x, size, xcenter, ycenter, coords = c(size = size, x = xcenter,

y = ycenter), datatype = c("numeric”, "integer"”, "logical”), nodata = NA)
geotm(x, size, xcenter, ycenter, coords = c(size = size, x = xcenter,

y = ycenter))
geomask(x, size, xcenter, ycenter, coords = c(size = size, x = xcenter,

y = ycenter))

read.geomat(file, type = "ascii”, datatype = c("numeric”, "integer"”, "logical"),
S

read.geotm(file, type = "ascii”, ...)

read.geomask(file, type = "ascii”, threshold =0, ...)

write.geomat(x, file, type = "ascii"”, integers = FALSE, nodata = -9999, ...)

write.geotm(x, file, type = "ascii”, nodata = -9999, ...)

write.geomask(x, file, type = "ascii”, nodata = -9999, ...)

as.geomat(x, ...)

S3 method for class 'geomat'

print(x, ...)
S3 method for class 'geomat'
coords(x, type = "par”, ...)

S3 method for class 'geomat'
resample(x, x@ = 1, y@ = 1, step = NULL, nx = 100, ny = nx,
strict = FALSE, ...)

S3 method for class 'geomat'
window(x, xlim, ylim, ...)

S3 method for class 'geomat'

plot(x, y = NULL, max.xgrid = 100, nlevels = 50,
color.palette = terrain.colors, xlab = "Longitude”, ylab = "Latitude”,
asp =1, ...)

S3 method for class 'geomat'

image(x, max.xgrid = 500, col = terrain.colors(50),

geomat

13

add = FALSE, xlab = if (add) "" else "Longitude”,
ylab = if (add) "" else "Latitude”, asp =1, ...)

S3 method for class 'geomat'

contour(x, max.xgrid = 100, nlevels = 10, col = par("fg"),
add = FALSE, xlab = if (add) "" else "Longitude",

ylab = if (add) "" else "Latitude", asp =1, ...)
S3 method for class 'geomat'
persp(x, max.xgrid = 500, col = "green3”,

xlab = "Longitude”, ylab = "Latitude”, asp
expand = 1, shade = 0.75, border = NA, box

Arguments

X

size

xcenter

ycenter
coords

datatype

nodata

file
type

threshold

integers

x0

yo
step

1, theta = 10, phi = 30,
TRUE, ...)

An object (a matrix or data frame for geomat(), geotm(), or geomask(), a
"predict.aurelhy’ object for as.geomat(), or a geomat’ object for the other
functions)

The size of a grid square (in decimal degrees)

The position of the center of the top-left square of the grid, that is, its longitude
in decimal degrees

Idem, but latitude in decimal degrees
A named vector of three numbers: ’size’, ’x” and ’y’ as above

The type of data to store in the grid, ort to read/write on the file. Can be 'nu-
meric’ (reals), ’integer’, or ’logical’ (booleans)

The number to use to represent missing data in the grid (by default it is NA).
For file operations, it is the numerical code used to represent missing or not
applicable cell in the file. By default, it is -9999 in ASCII grid format

The path to the file used for reading or writing data

The type of data to read/write. Currently, only \"ascii\", which means ARC/INFO
ASCII GRID format (.asc file). For coords(), it is the type of coordinates to ba
calculated: "par” is the vector defining the coordinates as ’size’ of the cell, ’x’
and ’y’ coordinates of the center of the top-left square in the grid and the *x1°,
’y1’ coordinates of the top-left point and *x2’, ’y2’ coordinates of the bottom-
right points covered by the grid. If "x", or "y", coords() returns a vector of
the coordinates of centers of the grid points. Finally if "xy", then, coords()
returns a data frame with ’x’ and ’y’ coordinates of all points in the grid (center
of rectangles)

Value (single integer) above which all data are converted to TRUE. The rest is
converted to FALSE, except missing data that are encoded as NA during the con-
version into logical values

Do we read/write integers (saves memory and disk space used to represent the
grid)

The X origin of the new grid
The Y origin of the new grid

The step to use for resampling (step = 2 means we take one point every two
original points in the grid).

14

nx

ny
strict

x1lim

ylim

y
max.xgrid

nlevels
color.palette
col

xlab

ylab

asp

add

theta
phi
expand

shade

border

box

Value

geomat

The desired number of points in the X direction (longitude). resample() is a
quick method that takes a point every n points in the grid without doing more
calculation. The final number of points is an integer value of points that can be
resampled without interpolation

idem than nx, but in the Y direction (latitude)

do we interpolated the grid so that we obtain exactly nx and ny point (when
strict = TRUE)? By default, not (strict = FALSE) and we span as far as possi-
ble to the right and to the bottom for the interpolated grid

A vector of two numbers defining the limits to use in X direction (longitude) for
the window

A vector of two numbers defining the limits to use in Y direction (latitude) for
the window

Unused argument to match plot () method definition

The maximum number of points in x direction to use. If the grid that is plotted
is denser, it is furst resampled to avoid drawing a graph with too much points

the number of contour levles to calculate

a color palette generation function

A vector of colors to use for the plot

The label of the X axis ("Longitude” by default)
The label of the Y axis ("Latitude” by default)

The aspect ratio between *x’ and ’y’. The default value of asp = 1 should usually
not be changed.

Do we add the graph to an existing graph device, or do we plot a fresh new
graph?

angles defining the viewing direction. theta gives the azimuthal direction
phi is the colatitude angle of the viewing direction
the expansion level to use for the z-axis in the perspective

the shade at a surface facet is computed as ((1+d)/2)*shade, where d is the
dot product of a unit vector normal to the facet and a unit vector in the direction
of a light source. Values of shade close to one yield shading similar to a point
light source model and values close to zero produce no shading. Values in the
range 0.5 to 0.75 provide an approximation to daylight illumination.

the color of the borders of facets. If NA, no border is drawn. This is usually a
good value when shading is used

If TRUE, a box, aznd axes are drawn around the perspective plot

Further arguments passed to the functions (only used for the plotting method)

An object of class, respectively *geomat’, geotm’ or ’geomask’ inheriting from *matrix’ is created.
Methods either return an object of same class, or are used for their side effect of plotting a graph.
Objects 'geotm’ and ’geomask’ also inherit from ’geomat’.

A ’geomat’ object. For the print() method, size of the grid is presented in km.

geomat

Author(s)

Philippe Grosjean <phgrosjean@sciviews.org>

See Also

aurelhy, auremask

Examples

Create a simple geomat object containing random numbers

(gm <- geomat(matrix(rnorm(120), nrow = 10), 0.1, 10, 20))

Get coordinates for this grid

coords(gm)

Longitudes (x) and latitudes (y) for the center of all squares
coords(gm, type = "x")

coords(gm, type = "y")

Coordinates of the center of all squares

coords(gm, type = "xy")

Resample the grid to take one point every second points in the original grid
resample(gm, step = 2)

Extract a window from the grid (keep only squares with centers in the window)
window(gm, xlim = c(9.5, 10.2), ylim = c(19.5, 20.6))

Plot this grid in different ways
plot(gm)

image (gm)

contour(gm)

persp(gm, expand = 100)

Now load real data (Morocco terrain model)
data(morocco)

morocco

image (morocco)

contour(morocco, add = TRUE)

grid()

The mask of points inside Morocco territory was obtained like that:
#library(splancs)

#data(mbord)

#inm <- inout(coords(morocco, "xy"), mbord[[1]])

#mmask <- morocco

#tmmask[inm] <- 1

#tmmask[!inm] <- @

#mmask[is.na(morocco)] <- NA

#mmask <- geomask(mmask, coords = coords(mmask))

data(mmask)
image (mmask)

Get Morocco frontiers from a shapefile

15

16 geopoints

To read it from an ESRI shape
#mbord <- read.geoshapes("morocco_border.shp")

data(mbord)
lines(mbord, col = "red")
geopoints A ’geopoints’ object containing one or more georeferenced data
Description

Geospoints objects contain data for one or more points defined by their longitude and latitude in
decimal degrees. These objects can be read or write to ERSI shape files, or DBF database.
Usage

geopoints(x)
read.geopoints(File, format)
write.geopoints(x, file, arcgis = FALSE,...)

S3 method for class 'geopoints'

print(x, ...)
S3 method for class 'geopoints'
points(x, ...)
Arguments
X A ’geoshapes’ object or a data frame with columns °x’ and "y’ for longitudes and
latitudes of the points in decimal degrees. For print() and points() methods,
it is a *geopoints’ object
File The path to a .shp (ESRI shape file) or .dbf (DBase) file to import
format Either "shp"” or "dbf". If you do not provide this argument, the format is guess
from the File extension
file The path to an ESRI file where to write data, without extension. Three files are
created, with respective extensions .shp, .shx, and .dbf
arcgis If TRUE, the header of the DBF table is made compatible with ArcGIS, that is,
dot (.) is replaced by underline (_)
Further arguments passed to the functions (not used yet)
Details

geopoints() converts a ’geoshapes’ object or a data frame into a ’geopoints’ object. read. geoshapes()
and write.geoshapes() read and write shapes from or to ESRI shape files or DBase files on disk.

The ’geoshapes’ objects have methods to print them, and to add them to graphs (points at corre-
sponding coordinates).

geoshapes 17

Value
A ’geopoints’ object is returned from geopoints() and read.geopoints(). The other functions
are used for their side-effect rather than for returning something useful.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

geomat, geoshapes

Examples

data(mpet)
mpet

Plot of Morocco terrain and add the stations location in red
data(morocco)

image (morocco)

points(mpet, col = 2)

geoshapes A ’geoshapes’ object containing one or more georeferenced shapes

Description

Geoshapes objects contain one or more shapes (that is, polygons, points, or polylines) defined by
their longitude and latitude in decimal degrees. These objects can be read or write to ERSI shape
files.

Usage

geoshapes(x, name = "1", dbf = NULL)

read.geoshapes(shpFile, dbf = TRUE)

write.geoshapes(x, file, type = c(”"polygon”, "point"”, "polyLine"),
dbf = TRUE, arcgis = FALSE,...)

S3 method for class 'geoshapes'

print(x, ...)
S3 method for class 'geoshapes'
lines(x, which =1, ...)

S3 method for class 'geoshapes'
points(x, which = "all", ...)

18

Arguments

X

name

dbf

shpFile
file

type
arcgis

which

Details

geoshapes

A data frame with columns ’x’ and ’y’ for longitudes and latitudes of the points
in decimal degrees, or a list of such data frames for geoshapes(); a ’geoshapes’
object for the other functions

The name to use for the shape in case a data frame is passed to geoshapes().
Ignored if a list is passed to the function

A data frame to record as ’dbf” attribute for geoshapes, or a flag indicating to
read or write DBF data too, if the file exists

The path to a .shp file (ESRI shape file) to import

The path to an ESRI file where to write data, without extension. Three files are
created, with respective extensions .shp, .shx, and .dbf

The type of shape to write in the ESRI shape file

If TRUE, the header of the DBF table is made compatible with ArcGIS, that is,
dot (.) is replaced by underline (_)

The index of the shape to use, or its name

Further arguments passed to the functions (not used yet)

geoshapes() converts a data frame or a list into a ’geoshapes’ object. read.geoshapes() and
write.geoshapes() read and write shapes from or to ESRI shape files on disk. The ’geoshapes’
objects have methods to print them (very concisely), and to add them to graphs, as polygons
lines(), or as separate points points().

Value

A ’geoshapes’ object is returned from geoshapes() and read.geoshapes(). The other functions
are used for their side-effect rather than for returning something useful.

Author(s)

Philippe Grosjean <phgrosjean @sciviews.org>

See Also

geomat, geopoints

Examples

data(mbord) # Morocco borders

mbord

Plot of Morocco terrain and add the borders in red

data(morocco)
image (morocco)

lines(mbord, col = 2)

mbord 19

Simulate the creation of a geoshapes object with two shapes
geoshapes(list(a = mbord[[1]], b = mbord[[1]1))

mbord A geoshapes object with a polygon of the area to analyze (around
Morocco)

Description

The mbord dataset is a ’geoshapes’ object (georeferenced shapes).

Usage
data(mbord)

Format

This *geoshapes’ object contains a polygon defining the area to analyze around Morocco in decimal
degrees (longitudes - latitudes).

See Also

geoshapes, morocco , mmask

mmask A geomask object masking the Morocco terrain model

Description

The mmask dataset is a ’geomask’ object (georeferenced mask). It indicates which ones of the points
in the morocco terrain model do belong to the territory to analyze around Morocco (TRUE), or are
land outside (FALSE). Points in the sea are flagged as NA.

Usage

data(mmask)

Format

This *geomask’ object contains a grid of 1986 x 1866 booleans masking the morocco terrain model.

See Also

geomask, morocco , mbord

20 mpet

morocco A digital elevation model with a grid of roughly 1km x 1km of Morocco

Description

The morocco dataset is a geotm’ object (georeferenced terrain model).

Usage

data(morocco)

Format

This "geotm’ object contains a grid of 1986x1866 elevation points (in m).

See Also

geotm, mbord, mmask, mseadist

mpet A geopoints object with PET values measured at different weather
stations

Description

The mpet dataset is a *geopoints’ object (georeferenced points data).

Usage

data(mpet)

Format
This ’geopoints’ object contains a data frame with PET measurements (D1 - D36) made at 18 weather
stations (names in STATION and coordinates in x and y).

See Also

geopoints, morocco, mbord, mrain

mrain 21

mrain A geopoints object with normalized rain values (mm) measured at
different weather stations

Description

The mrain dataset is a *geopoints’ object (georeferenced points data).

Usage

data(mrain)

Format
This ’geopoints’ object contains a data frame with rain measurements (rain variable) made at 43
weather stations (coordinates in x and y variables).

See Also

geopoints, morocco, mbord, mpet

mseadist A geomat object with distance from the sea for the morocco data

Description

The mseadist dataset is a "geomat’ object (georeferenced data).

Usage

data(mseadist)

Format
This ’geomat’ object contains a matrix with distance from the sea for all points in the morocco
dataset. It can be used as supplemntary variable for AURELHY interpolation.

See Also

geomat, morocco, mbord, mpet

22 unitTests.aurelhy

unitTests.aurelhy Unit tests for the package aurelhy

Description

Performs unit tests defined in this package by running example (unitTests.aurelhy). Tests are in
runit*.R files located in the ’/unitTests’ subdirectory or one of its subdirectories (’/inst/unitTests’
and subdirectories in package sources).

Author(s)

Philippe Grosjean (<phgrosjean@sciviews.org>)

Examples

if (require(svUnit)) {
clearLog()

This test is now moved to the tests directory
runTest(svSuite("package:aurelhy”), "aurelhy")

Check errors at the end (needed to interrupt R CMD check)
errorLog()

Index

+ datasets
mbord, 19
mmask, 19
morocco, 20
mpet, 20
mrain, 21
mseadist, 21

+ package
aurelhy-package, 2

x utilities
aurelhy, 3
aurelhy-utilities, 8
auremask, 10
geomat, 12
geopoints, 16
geoshapes, 17
unitTests.aurelhy, 22

add.points (aurelhy-utilities), 8
as.geomat (geomat), 12
as.geomat.aurelhy (aurelhy), 3
as.geomat.predict.aurelhy (aurelhy), 3
aurelhy, 3, 15

aurelhy-package, 2
aurelhy-utilities, 8
auremask, 5, 10, 10, 15

contour.geomat (geomat), 12
coords (aurelhy-utilities), 8
coords.geomat (geomat), 12

deg.lat (aurelhy-utilities), 8
deg.lon (aurelhy-utilities), 8
dist2sea (aurelhy-utilities), 8

geomask, 19

geomask (geomat), 12
geomat, 10, 11,12,17, 18, 21
geopoints, 16, 18, 20, 21
geoshapes, 17,17, 19

23

geotm, 5, 20
geotm (geomat), 12

image.geomat (geomat), 12
lines.geoshapes (geoshapes), 17

match.coords (aurelhy-utilities), 8
mbord, 19, 19, 20, 21

mmask, 19, 19, 20
morocco, 19, 20, 20, 21

mpet, 20, 21

mrain, 20, 21

mseadist, 20, 21

persp.geomat (geomat), 12
plot.aurelhy (aurelhy), 3
plot.auremask (auremask), 10
plot.geomat (geomat), 12
plot.predict.aurelhy (aurelhy), 3
points.aurelhy (aurelhy), 3
points.geopoints (geopoints), 16
points.geoshapes (geoshapes), 17
polar.coords, /1

polar.coords (aurelhy-utilities), 8
predict.aurelhy (aurelhy), 3
print.aurelhy (aurelhy), 3
print.auremask (auremask), 10
print.geomat (geomat), 12
print.geopoints (geopoints), 16
print.geoshapes (geoshapes), 17
print.predict.aurelhy (aurelhy), 3

read. geomask (geomat), 12
read.geomat (geomat), 12
read.geopoints (geopoints), 16
read.geoshapes (geoshapes), 17
read.geotm (geomat), 12
resample (aurelhy-utilities), 8
resample.geomat (geomat), 12

24 INDEX

summary.aurelhy (aurelhy), 3
summary.predict.aurelhy (aurelhy), 3

unitTests.aurelhy, 22
update.aurelhy (aurelhy), 3

window.geomat (geomat), 12
write.geomask (geomat), 12
write.geomat (geomat), 12
write.geopoints (geopoints), 16
write.geoshapes (geoshapes), 17
write.geotm(geomat), 12

	aurelhy-package
	aurelhy
	aurelhy-utilities
	auremask
	geomat
	geopoints
	geoshapes
	mbord
	mmask
	morocco
	mpet
	mrain
	mseadist
	unitTests.aurelhy
	Index

