Package: SciViews (via r-universe)

July 24, 2024

Type Package

Version 1.6.1
Title 'SciViews::R' Dialect for Data Processing and Visualization
Description The 'SciViews::R' dialect provides a set of functions that streamlines data input, process, analysis and visualization especially, but not exclusively, for beginners or occasional users. It mixes base R and tidyverse, plus another set of CRAN packages for an easy and coherent use of R.
Maintainer Philippe Grosjean phgrosjean@sciviews.org
Depends R (>=4.2.0)
Imports cli ($>=3.6 .1$), crayon ($>=1.5 .2$), ellipse ($>=0.4 .5$), graphics ($>=4.2 .0$), grDevices $(>=4.2 .0)$, purrr ($>=1.0 .1$), rstudioapi $(>=0.14)$, stats $(>=4.2 .0)$, svBase ($>=1.4 .0$), tabularise ($>=0.5 .0$), utils
Suggests broom ($>=1.0 .4$), chart ($>=1.5 .0$), collapse ($>=2.0 .12$), data.io ($>=1.5 .0$), data.table ($>=1.15 .4$), dbplyr ($>=2.3 .2$), dplyr ($>=1.1 .4$), dtplyr ($>=1.3 .1$), forcats ($>=1.0 .0$), fs $(>=$ 1.6.1), ggplot2 ($>=3.4 .2$), googledrive ($>=2.1 .0$), googlesheets $4(>=1.1 .0)$, haven $(>=2.5 .2), \mathrm{hms}(>=1.1 .3)$, httr ($>=1.4 .5$), jsonlite ($>=1.8 .4$), lubridate ($>=1.9 .2$), magrittr $(>=2.0 .3)$, MASS $(>=7.3 .58 .3)$, modelr $(>=0.1 .11)$, pillar ($>=1.9 .0$) , readr ($>=2.1 .4$), readxl $(>=1.4 .2)$, reprex ($>=2.0 .2$), rlang $(>=1.1 .1)$, rvest $(>=1.0 .3)$, stringr $(>=$ 1.5.0), svFlow ($>=1.2 .0$), svMisc ($>=1.4 .0$), tibble ($>=$ 3.2.1), tidyr ($>=1.3 .0$), tidyverse ($>=2.0 .0$), xml 2 ($>=$ 1.3.3), knitr ($>=1.42$), rmarkdown ($>=2.21$), spelling ($>=$ 2.2.1), testthat (>=3.0.0)

Remotes SciViews/chart, SciViews/data.io, SciViews/svBase, SciViews/svFlow, SciViews/svMisc, SciViews/tabularise
Enhances base
License GPL-2
URL https://github.com/SciViews/SciViews,
https://www.sciviews.org/SciViews/

BugReports https://github.com/SciViews/SciViews/issues
Roxygen list(markdown $=$ TRUE)
RoxygenNote 7.2.3
VignetteBuilder knitr
Encoding UTF-8
Language en-US
ByteCompile yes
Config/testthat/edition 3
Repository https://sciviews.r-universe.dev
RemoteUrl https://github.com/SciViews/SciViews
RemoteRef HEAD
RemoteSha 32dcee91d0261c8388156f8087fbef1eaf5083df

Contents

SciViews-package 2
colors 3
correlation 4
enum 7
ln 8
nr 9
panels 10
panels.diag 14
pcomp 18
SciViews_packages 23
SciViews_R 24
timing 25
vectorplot 26
Index 28

SciViews-package 'SciViews::R' Dialect for Data Processing and Visualization

Description

The SciViews: : R dialect is base $\mathrm{R}+$ tidyverse + a series of additional SciViews packages like data.io, svBase, svFlow, tabularise or chart.
colors

Important functions

- $R()$ for loading the 'SciViews::R" packages,
- pcomp() for a PCA analysis (unifying various methods),
- correlation() to calculate and plot a correlation matrix,
- panel_reg() and others to plot panels in pairs or coplot graphs,
- panel_boxplot() and others for univariate panels in pairs plots.
- rwb_colors() and others to generate color palettes.
- enum() to enumerate items in a vector,
- timing() to determine the time required to run an R expression,
- nr() and co as convenient shorthand to columns and rows,
- $\ln ()$ and others for natural logarithm.

colors Various color palettes

Description

Create vectors of n colors.

Usage

rwb_colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9$)
rwb.colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$
rwg_colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$
rwg.colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$
ryg_colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$
ryg.colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$
cwm_colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$
cwm.colors(n, alpha $=1, \mathrm{~s}=0.9, \mathrm{v}=0.9)$

Arguments

n
alpha
s
v

The number of colors $(>=1)$ to be in the palette.
The alpha transparency, a number in [0, 1], see argument alpha in hsv().
The 'saturation' to be used to complete the HSV color descriptions.
The 'value' to use for the HSV color descriptions.

Details

cwm_colors ($s=0.5, v=1$) gives very similar colors to cm.colors(). ryg_colors() is similar to rainbow (start $=0$, end $=2 / 6$). The $x x x$ _colors() (tidyverse name-compatible) and xxx.colors() (grDevices name-compatible) functions are synonyms.

See Also

cm.colors(), colorRampPalette()

Examples

```
# Draw color wheels with various palettes
opar <- par(mfrow = c(2, 2))
pie(rep(1, 11), col = cwm.colors(11), main = "Cyan - white - magenta")
pie(rep(1, 11), col = rwb.colors(11), main = "Red - white - blue")
pie(rep(1, 11), col = rwg.colors(11), main = "Red - white - green")
pie(rep(1, 11), col = ryg.colors(11), main = "Red - yellow - green")
par(opar)
```

correlation Correlation matrices

Description

Compute the correlation matrix between all columns of a matrix or data frame.

Usage

```
correlation(x, ...)
    Correlation(x, ...)
    ## S3 method for class 'formula'
    correlation(formula, data = NULL, subset, na.action, ...)
    ## Default S3 method:
    correlation(
        x,
        y = NULL,
        use = "everything",
        method = c("pearson", "kendall", "spearman"),
    )
    is.Correlation(x)
    is.correlation(x)
```

```
as.Correlation(x)
as.correlation(x)
## S3 method for class 'Correlation'
print(x, digits = 3, cutoff = 0, ...)
## S3 method for class 'Correlation'
summary(
    object,
    cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95),
    symbols = c(" ", ".", ",", "+", "*", "B"),
)
## S3 method for class 'summary.Correlation'
print(x, ...)
## S3 method for class 'Correlation'
plot(
    x,
    y = NULL,
    outline = TRUE,
    cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95),
    palette = rwb.colors,
    col = NULL,
    numbers = TRUE,
    digits = 2,
    type = c("full", "lower", "upper"),
    diag = (type == "full"),
    cex.lab = par("cex.lab"),
    cex = 0.75 * par("cex"),
)
## S3 method for class 'Correlation'
lines(
    x,
    choices = 1L:2L,
    col = par("col"),
    lty = 2,
    ar.length = 0.1,
    pos = NULL,
    cex = par("cex"),
    labels = rownames(x),
)
```


Arguments

X

	Further arguments passed to functions.
formula	A formula with no response variable, referring only to numeric variables.
data	An optional data frame (or similar, see model.frame()) containing the variables in the formula. By default the variables are taken from environment (formula).
subset	An optional vector used to select rows (observations) of the data matrix x .
na.action	A function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options() and na.fail() is used if that is not set. The 'factory-fresh' default is na.omit().
y	NULL (default), or a vector, matrix or data frame with compatible dimensions to x for Correlation(). The default is equivalent to $x=y$, but more efficient.
use	An optional character string giving a method for computing correlations in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs"
method	A character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman", can be abbreviated.
digits	Digits to print after the decimal separator.
cutoff	Correlation coefficients lower than this (in absolute value) are suppressed.
object	A 'Correlation' object.
cutpoints	The cut points to use for categories. Specify only positive values (absolute value of correlation coefficients are summarized, or negative equivalents are automatically computed for the graph. Do not include 0 or 1 in the cutpoints).
symbols	The symbols to use to summarize the correlation matrix.
outline	Do we draw the outline of the ellipse?
palette	A function that can produce a palette of colors.
col	Color of the ellipse. If NULL (default), the colors will be computed using cutpoints and palette.
numbers	Do we print correlation values in the center of the ellipses?
type	Do we plot a complete matrix, or only lower or upper triangle?
diag	Do we plot items on the diagonal? They have always a correlation of one.
cex.lab	The expansion factor for labels.
cex	The expansion factor for text.
choices	The items to select.
lty	The line type to draw.
ar.length	The length of the arrow head.
pos	The position relative to arrows.
labels	The label to draw near the arrows.

Value

Correlation() and as.Correlation() create a 'Correlation' object, while is.Correlation() tests for it.
There are print() and summary () methods for the 'Correlation' object that differ in the symbolic encoding of the correlations, (using symnum() for summary ()), which makes large correlation matrices more readable.
The plot() method draws ellipses on a graph to represent the correlation matrix visually. This is essentially the plotcorr() function from package ellipse, with slightly different default arguments and with default cutpoints equivalent to those used in the summary () method.

Author(s)

Philippe Grosjean phgrosjean@ sciviews.org, wrapping code in package ellipse, function plotcorr() for the plot.Correlation() method.

See Also

$\operatorname{cov}(), \operatorname{cov} 2 \operatorname{cor}(), \operatorname{cov} . w t(), \operatorname{symnum}()$, plotcorr() and look also at panel_cor()

Examples

```
# This is a simple correlation coefficient
cor(rnorm(10), runif(10))
Correlation(rnorm(10), runif(10))
# 'Correlation' objects allow better inspection of the correlation matrices
# than the output of default R cor() function
(longley.cor <- Correlation(longley))
summary(longley.cor) # Synthetic view of the correlation matrix
plot(longley.cor) # Graphical representation
# Use of the formula interface
(mtcars.cor <- Correlation(~ mpg + cyl + disp + hp, data = mtcars,
    method = "spearman", na.action = "na.omit"))
mtcars.cor2 <- Correlation(mtcars, method = "spearman")
print(mtcars.cor2, cutoff = 0.6)
summary(mtcars.cor2)
plot(mtcars.cor2, type = "lower")
mtcars.cor2["mpg", "cyl"] # Extract a correlation from the correlation matrix
```

enum Enumerate items in an object

Description

enum() creates a vector of integers from 1 to length of the object (it enumerates items in the object), except if the object is empty. It is particularly useful in the for (i in enum(object)) construct.

Usage

enum(x)

Arguments

x
Any object.

Note

The pattern for (i in 1:length(object)) is often found, but it fails in case length (object) $==$ 0 ! enum() is indeed a synonym of seq_along(), but the later one is less expressive in the context.

See Also

seq_along()

Examples

```
    enum(letters)
    enum(numeric(0))
    # Compare with:
    1:length(numeric(0))
    enum(NULL)
    letters5 <- letters[1:5]
    for (i in enum(letters5)) cat("letter", i, "=", letters5[i], "\n")
```

 ln Logarithmic and exponential functions

Description

$\ln ()$ computes natural logarithm, $\lg ()$ computes base 10 logarithm, and $\operatorname{lb}()$ computes binary (base 2) logarithm.
$\ln 1 p()$ and $\lg 1 p()$ computes $\ln (x+1)$ and $\lg (x+1)$ accurately also for $|x| \ll 1$.
E is the Euler constant and is equal to $\exp (1)$.

Usage

$\ln (x)$
$\lg (x)$
$1 b(x)$
$\ln 1 p(x)$
$\lg 1 \mathrm{p}(\mathrm{x})$
E

Arguments

x A numeric or complex vector.

Format

An object of class numeric of length 1.

Details

Those functions are synonyms of $\log (), \log 10(), \log 2(), \log 1 p()$ for those who prefer the shorter notation. Beginners sometimes make confusion between $\log ()$ and $\log 10()$. Using $\ln ()$ for natural \log arithms instead of $\log ()$ eliminates this confusion. E is provided for convenience as $\exp (1)$, although the use of $\exp ()$ is usually familiar enough to everyone.

See Also

$\log ()$

Examples

```
ln(exp(3)) # Same as log(exp(3))
lg(10^3) # Same as }\operatorname{log}10(10^3
lb(1:3) # Wrapper for log2()
ln1p(c(0, 1, 10, 100)) # Wrapper for log1p()
lg1p(c(0, 1, 10, 100)) # log10(x + 1), but optimized for x << 1
E^4 # Similar to exp(4), but different calculation!
```

$n r$

Convenience functions for rows or columns manipulations

Description

nr() and nc() are synonyms of the ugly NROW() or NCOL () that get the number of row and columns in a matrix or data frame, but also in a vector (they return a value even if the dim attribute of the object is not set, on the contrary to nrow() or ncol()).

ROWS and COLS are constants that makes call to apply () more expressive. ROWS $=1 \mathrm{~L}$ and COLS $=2 \mathrm{~L}$.

Usage

$n r(x)$
$n c(x)$

ROWS

COLS

Arguments

X
Any object.

Format

An object of class integer of length 1 .
An object of class integer of length 1 .

See Also

nrow()

Examples

```
mm <- matrix(1:6, nrow = 3)
nr(mm)
nc(mm)
vv <- 1:6
nr(vv)
nc(vv)
# ROWS and COLS constants used with apply()
apply(mm, ROWS, mean) # Idem apply(mm, 1, mean)
apply(mm, COLS, mean) # Idem apply(mm, 2, mean)
```

panels
More panel plots

Description

Several panel plots that can be used with coplot() and pairs().

Usage

```
panel_reg(
    x,
    y,
    col = par("col"),
    bg = par("bg"),
    pch = par("pch"),
    cex = par("cex"),
    lwd = par("lwd"),
    line.reg = lm,
    line.col = "red",
    line.lwd = lwd,
    untf = TRUE,
```

```
)
panel.reg(
    x,
    y,
    col = par("col"),
    bg = par("bg"),
    pch = par("pch"),
    cex = par("cex"),
    lwd = par("lwd"),
    line.reg = lm,
    line.col = "red",
    line.lwd = lwd,
    untf = TRUE,
)
panel_ellipse(
    x,
    y,
    col = par("col"),
    bg = par("bg"),
    pch = par("pch"),
    cex = par("cex"),
    el.level = 0.7,
    el.col = "cornsilk",
    el.border = "red",
    major = TRUE,
    )
panel.ellipse(
        x,
    y,
    col = par("col"),
    bg = par("bg"),
    pch = par("pch"),
    cex = par("cex"),
    el.level = 0.7,
    el.col = "cornsilk",
    el.border = "red",
    major = TRUE,
    ...
)
```

panel_cor $($
x ,
y ,

```
    use = "everything",
    method = c("pearson", "kendall", "spearman"),
    alternative = c("two.sided", "less", "greater"),
    digits = 2,
    prefix = "",
    cex = par("cex"),
    cor.cex = cex,
    stars.col = "red",
    ..
)
panel.cor(
    x,
    y,
    use = "everything",
    method = c("pearson", "kendall", "spearman"),
    alternative = c("two.sided", "less", "greater"),
    digits = 2,
    prefix = "",
    cex = par("cex"),
    cor.cex = cex,
    stars.col = "red",
)
panel_smooth(
    x,
    y,
    col = par("col"),
    bg = NA,
    pch = par("pch"),
    cex = 1,
    col.smooth = 2,
    span = 2/3,
    iter = 3,
)
```


Arguments

x
y
col
bg
pch
cex
lwd

A numeric vector.
A numeric vector of same length as x.
The color of the points.
The background color for symbol used for the points.
The symbol used for the points.
The expansion factor used for the points.
The line width.

line.reg	A function that calculates coefficients of a straight line, for instance, $\operatorname{lm}()$, or $r \operatorname{lm}()$ for robust linear regression.
line.col	The color of the line.
line.lwd	The width of the line.
untf	Logical asking whether to untransform the straight line in case one or both axis are in log scale.
	Further arguments to plot functions.
el.level	The confidence level for the bivariate normal ellipse around data; the default value of 0.7 draws an ellipse of roughly $+/-1$ sd.
el.col	The color used to fill the ellipse.
el.border	The color used to draw the border of the ellipse and the standardized major axis.
major	If TRUE, the standardized major axis is also drawn.
use	One of "everything", "all.obs", "complete.obs", "na.or. complete", or "pairwise. complete.obs" (can be abbreviated). Defines how the cor() function behaves with missing observations.
method	One of the three correlation coefficients "pearson" (default), "kendall", or "spearman". Can be abbreviated.
alternative	The alternative hypothesis in correlation test, see cor.test().
digits	The number of decimal digits to print when the correlation coefficient is printed in the graph.
prefix	A prefix (character string) to use before the correlation coefficient printed in the graph.
cor.cex	Expansion coefficient for text in printing correlation coefficients.
stars.col	The color used for significance stars (with: ${ }^{* * *} \mathrm{p}<0.001,{ }^{* *} \mathrm{p}<0.1, * \mathrm{p}<0.05$, . p < 0.1.
col.smooth	Color to be used by lines for drawing the smooths.
span	Smoothing parameter f for lowess(), see there.
iter	Number of robustness iterations for lowess().

Details

Theses functions should be used outside of the diagonal in pairs(), or with coplot(), as they are bivariate plots.

Value

These functions return nothing and are used for their side effect of plotting in panels of composite plots.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org, but code inspired from panel.smooth() in graphics and panel.car() in package car.

See Also

coplot(), pairs(), panel.smooth(), lm(), ellipse(), cor() and cor.test()

Examples

```
    # Smooth lines in lower graphs and straight lines in upper graphs
    pairs(trees, lower.panel = panel_smooth, upper.panel = panel_reg)
    # Robust regression lines
    library(MASS) # For rlm()
    pairs(trees, panel = panel_reg, diag.panel = panel_boxplot,
        reg.line = rlm, line.col = "blue", line.lwd = 2)
    # A Double log graph
    pairs(trees, lower.panel = panel_smooth, upper.panel = panel_reg, log = "xy")
    # Graph suitables to explore correlations (take care there are potentially
    # many simultaneous tests done here... So, you loose much power in the whole
    # analysis... use it just as an indication!)
    # Pearson's r
    pairs(trees, lower.panel = panel_ellipse, upper.panel = panel_cor)
    # Spearman's rho (ellipse and straight lines not suitable here!)
    pairs(trees, lower.panel = panel_smooth, upper.panel = panel_cor,
        method = "spearman", span = 1)
    # Several groups (visualize how bad it is to consider the whole set at once!)
    pairs(iris[, -5], lower.panel = panel_smooth, upper.panel = panel_cor,
        method = "kendall", span = 1,
        col = c("red3", "blue3", "green3")[iris$Species])
# Now analyze correlation for one species only
pairs(iris[iris$Species == "virginica", -5], lower.panel = panel_ellipse,
    upper.panel = panel_cor)
# A coplot with custom panes
coplot(Petal.Length ~ Sepal.Length | Species, data = iris,
    panel = panel_ellipse)
```

panels.diag

More univariate panel plots

Description

Several panel plots that can be used with pairs().

Usage

panel_boxplot(x, col = par("col"), box.col = "cornsilk", ...)
panel.boxplot(x, col = par("col"), box.col = "cornsilk", ...)
panel_density(
x,

```
    adjust = 1,
    rug = TRUE,
    col = par("col"),
    lwd = par("lwd"),
    line.col = col,
    line.lwd = lwd,
    ...
)
panel.density(
    x,
    adjust = 1,
    rug = TRUE,
    col = par("col"),
    lwd = par("lwd"),
    line.col = col,
    line.lwd = lwd,
)
panel_hist(
        x,
        breaks = "Sturges",
        hist.col = "cornsilk",
        hist.border = NULL,
        hist.density = NULL,
        hist.angle = 45,
)
panel.hist(
        x,
        breaks = "Sturges",
        hist.col = "cornsilk",
        hist.border = NULL,
        hist.density = NULL,
        hist.angle = 45,
)
panel_qqnorm(
        x,
        pch = par("pch"),
        col = par("col"),
        bg = par("bg"),
        cex = par("cex"),
        lwd = par("lwd"),
        qq.pch = pch,
```

```
    qq.col = col,
    qq.bg = bg,
    qq.cex = cex,
    qqline.col = qq.col,
    qqline.lwd = lwd,
)
panel.qqnorm(
    x,
    pch = par("pch"),
    col = par("col"),
    bg = par("bg"),
    cex = par("cex"),
    lwd = par("lwd"),
    qq.pch = pch,
    qq.col = col,
    qq.bg = bg,
    qq.cex = cex,
    qqline.col = qq.col,
    qqline.lwd = lwd,
    ...
)
```


Arguments

x
col
box.col The filling color of the boxplots.
A numeric vector.
The color of the points.
adjust
rug Do we add a rug representation (1-d plot) of the points too?
lwd The line width.
line.col The color of the line.
line.lwd The width of the line.
breaks The number of breaks, the name of a break algorithm, a vector of breakpoints, or any other acceptable value for breaks argument of hist().
hist.col The filling color for the histograms.
hist.border The border color for the histograms.
hist. density The density for filling lines in the histograms.
hist.angle The angle for filling lines in the histograms.
pch The symbol used for the points.
bg
Further arguments to plot functions, or functions that construct items, like density(), depending on the context.
The bandwidth adjustment factor, see density ().

cex	The expansion factor used for the points.
qq.pch	The symbol used to plot points in the QQ-plots.
qq.col	The color of the symbol used to plot points in the QQ-plots.
qq.bg	The background color of the symbol used to plot points in the QQ-plots.
qq.cex	The expansion factor for points in the QQ-plots.
qqline.col	The color for the QQ-plot lines.
qqline.lwd	The width for the QQ-plot lines.

Details

Panel functions panel_boxplot(), panel_density(), panel_hist() and panel_qqnorm() should be used only to plot univariate data on the diagonals of pairs() plots (or scatterplot matrix).

Value

These functions return nothing and are used for their side effect of plotting in panels of composite plots.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org, but code inspired from spm() in package car.

See Also

```
pairs(), boxplot(), hist(), density(), qqnorm()
```


Examples

```
# Example of scatterplot matrices with custom plots on the diagonal
# Boxplots
pairs(trees, panel = panel_smooth, diag.panel = panel_boxplot)
pairs(trees, diag.panel = panel_boxplot, box.col = "gray")
# Densities
pairs(trees, panel = panel_smooth, diag.panel = panel_density)
pairs(trees, diag.panel = panel_density, line.col = "red", adjust = 0.5)
# Histograms
pairs(trees, panel = panel_smooth, diag.panel = panel_hist)
pairs(trees, diag.panel = panel_hist, hist.col = "gray", breaks = "Scott")
# QQ-plots against Normal theoretical distribution
pairs(trees, panel = panel_smooth, diag.panel = panel_qqnorm)
pairs(trees, diag.panel = panel_qqnorm, qqline.col = 2, qq.cex = .5, qq.pch = 3)
```

```
pcomp Principal Components Analysis
```


Description

Perform a principal components analysis (PCA) on a matrix or data frame and return a pcomp object.

Usage

```
    pcomp (x, ...)
    \#\# S3 method for class 'formula'
    pcomp(formula, data \(=\) NULL, subset, na.action, method \(=c(" s v d "\), "eigen"), ...)
    \#\# Default S3 method:
    pcomp(
        x ,
        method = c("svd", "eigen"),
        scores = TRUE,
        center = TRUE,
        scale = TRUE,
        tol = NULL,
        covmat \(=\) NULL,
        subset \(=\) rep(TRUE, \(\operatorname{nrow(as.matrix(x))),~}\)
        ...
    )
    \#\# S3 method for class 'pcomp'
    print(x, ...)
    \#\# S3 method for class 'pcomp'
    summary (object, loadings \(=\) TRUE, cutoff \(=0.1, \ldots\) )
    \#\# S3 method for class 'summary.pcomp'
    print(x, digits = 3, loadings = x\$print.loadings, cutoff = x\$cutoff, ...)
    \#\# S3 method for class 'pcomp'
    plot \((\)
        x ,
        which = c("screeplot", "loadings", "correlations", "scores"),
        choices = 1L:2L,
        col = par("col"),
        bar.col = "gray",
        circle.col = "gray",
        ar.length = 0.1,
        pos = NULL,
        labels = NULL,
```

```
    cex = par("cex"),
    main = paste(deparse(substitute(x)), which, sep = " - "),
    xlab,
    ylab,
)
## S3 method for class 'pcomp'
screeplot(
    x,
    npcs = min(10, length(x$sdev)),
    type = c("barplot", "lines"),
    col = "cornsilk",
    main = deparse(substitute(x)),
)
## S3 method for class 'pcomp'
points(
    x,
    choices = 1L:2L,
    type = "p",
    pch = par("pch"),
    col = par("col"),
    bg = par("bg"),
    cex = par("cex"),
)
## S3 method for class 'pcomp'
lines(
        x,
        choices = 1L:2L,
        groups,
        type = c("p", "e"),
        col = par("col"),
        border = par("fg"),
        level = 0.9,
)
## S3 method for class 'pcomp'
text(
    x,
    choices = 1L:2L,
    labels = NULL,
    col = par("col"),
    cex = par("cex"),
```

```
    pos = NULL,
)
## S3 method for class 'pcomp'
biplot(x, choices = 1L:2L, scale = 1, pc.biplot = FALSE, ...)
## S3 method for class 'pcomp'
pairs(
    x,
    choices = 1L:3L,
    type = c("loadings", "correlations"),
    col = par("col"),
    circle.col = "gray",
    ar.col = par("col"),
    ar.length = 0.05,
    pos = NULL,
    ar.cex = par("cex"),
    cex = par("cex"),
    ...
)
## S3 method for class 'pcomp'
predict(object, newdata, dim = length(object$sdev), ...)
## S3 method for class 'pcomp'
correlation(x, newvars, dim = length(x$sdev), ...)
scores(x, ...)
## S3 method for class 'pcomp'
scores(x, labels = NULL, dim = length(x$sdev), ...)
```


Arguments

x

... Arguments passed to or from other methods. If x is a formula one might specify scale, tol or covmat.
formula A formula with no response variable, referring only to numeric variables.
data An optional data frame (or similar, see model.frame()) containing the variables in the formula. By default the variables are taken from environment (formula).
subset An optional vector used to select rows (observations) of the data matrix x.
na.action
A function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options(), and is na.fail() if that is not set. The 'factory-fresh' default is na.omit().
method Either "svd" (using prcomp()), "eigen" (using princomp()), or an abbreviation.

scores	A logical value indicating whether the score on each principal component should be calculated.
center	A logical value indicating whether the variables should centered. Alternately, a vector of length equal the number of columns of x can be supplied. The value is passed to scale. Note that this argument is ignored for method = "eigen" and the dataset is always centered in this case.
	A logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is TRUE, which in general,	
is advisable. Alternatively, a vector of length equal the number of columns of x	

groups A grouping factor.
border The color of the border.
level The probability level to use to draw the ellipse.
pc.biplot Do we create a Gabriel's biplot (see biplot())?
ar.col Color of arrows.
ar.cex Expansion factor for text on arrows.
newdata New individuals with observations for the same variables as those used for calculating the PCA. You can then plot these additional individuals in the scores plot.
dim The number of principal components to keep.
newvars New variables with observations for same individuals as those used for calculating the PCA. Correlation with PCs is calculated. You can then plot these additional variables in the correlation plot.

Details

pcomp() is a generic function with "formula" and "default" methods. It is essentially a wrapper around prcomp() and princomp() to provide a coherent interface and object for both methods.
A 'pcomp' object is created. It inherits from 'pca' (as in labdsv package, but not compatible with the version of 'pca' in ade4) and of 'princomp'.
For more information on algorithms, refer to prcomp() for method = "svd" or princomp() for method = "eigen".

Value

A c("pcomp", "pca", "princomp") object.

Note

The signs of the columns for the loadings and scores are arbitrary. So, they could differ between functions for PCA, and even between different builds of R.

Author(s)

Philippe Grosjean phgrosjean@sciviews.org, but the core code is indeed in package stats.

See Also

```
prcomp(), princomp(), loadings(), vectorplot(), Correlation()
```


Examples

```
# Let's analyze mtcars without the Mercedes data (rows 8:14)
data(mtcars)
cars.pca <- pcomp(~ mpg + cyl + disp + hp + drat + wt + qsec,
    data = mtcars, subset = -(8:14))
cars.pca
```

```
summary(cars.pca)
screeplot(cars.pca)
# Loadings are extracted and plotted this way:
(cars.ldg <- loadings(cars.pca))
plot(cars.pca, which = "loadings") # Equivalent to vectorplot(cars.ldg)
# Similarly, correlations of variables with PCs are extracted and plotted:
(cars.cor <- Correlation(cars.pca))
plot(cars.pca, which = "correlations") # Equivalent to vectorplot(cars.cor)
# One can add supplementary variables on this graph
lines(Correlation(cars.pca,
    newvars = mtcars[-(8:14), c("vs", "am", "gear", "carb")]))
# Plot the scores:
plot(cars.pca, which = "scores", cex = 0.8) # Similar to plot(scores(x)[, 1:2])
# Add supplementary individuals to this plot (labels), also points() or lines()
text(predict(cars.pca, newdata = mtcars[8:14, ]),
    labels = rownames(mtcars[8:14, ]), col = "gray", cex = 0.8)
# Pairs plot for 3 PCs
iris.pca <- pcomp(iris[, -5])
pairs(iris.pca, col = (2:4)[iris$Species])
```

SciViews_packages Give the list of SciViews::R packages and check for conflicts

Description

List required packages or conflicting functions. These functions are inspired by tidyverse: : tidyverse_packages() and tidyverse: :tidyverse_conflicts(), but adapted to the SciViews::R context.

Usage

SciViews_packages(..., all = FALSE)
SciViews_packages_topics(all = FALSE)
SciViews_conflicts(all = TRUE)
\#\# S3 method for class 'SciViews_conflicts'
print(x, ..., startup = FALSE)

Arguments

... Further topics to consider in SciViews: :R. Currently, "infer", "model", "explore", "ml", "ts" or "spatial".
all Should all packages be listed (TRUE) or only those that are attached to the search path (FALSE).

```
x
    A SciViews_conflicts object
startup Should the message be printed at startup?
```


Value

A list of packages for SciViews_packages(), or a SciViews_conflicted object with a print() method for SciViews_conflicts().

Examples

```
# List of packages attached to the search path with SciViews::R
SciViews_packages()
# More complete list of packages used by SciViews::R
SciViews_packages(all = TRUE)
# Even more packages, by adding also 'model' and 'ml' topics
SciViews_packages("model", "ml", all = TRUE)
# Conflicts
SciViews_conflicts()
```

SciViews_R Configure R for the SciViews::R dialect

Description

Load required packages like data.table, collapse, ggplot2, dplyr, svMisc, ... to get a fully functional SciViews: : R dialect environment.

Usage

$R(. .$. lang $=$ NULL, $d t x=$ NULL, threads.percent $=75$, silent $=$ TRUE)
\#\# S3 method for class 'SciViews_R'
print(x, ...)

Arguments

.. Further topics to include to configure R (load more packages). Currently, "infer", "model", "explore", "ml", "ts" or "spatial"
lang What is the default natural language to use, e.g., "en" or "fr", with uppercase versions "EN" or "FR" convert even more strings, for instance, data.io: :read() does not convert factor levels in the corresponding language for supported data sets unless the uppercase version is specified. If NULL (by default), current configuration is not changed.
$d t x \quad$ Which dtx object is to be used be default? "dtt" or "data. table" for data.table, "dtf" or "data.frame" for data.frame, "dtbl", "tibble" or "tbl_df" for tibble's tbl_df, the name of a function to use to convert a data.frame object, or NULL (by default) to keep current settings.

```
threads.percent
```

The percentage of threads to use for \{data.table\} and \{collapse\} parallel code (number of threads depend on how many are available, and the value is rounded towards zero).
silent If TRUE (by default), no report is printed about loaded packages and conflicts.
x An object to print.

Note

Use SciViews: : R instruction in the beginning of an R script, or in the setup or first chunk of an R Markdown/Notebook to ensure the SciViews::R dialect is correctly installed. The report indicating attached packages and conflicts is largely inspired by the corresponding tidyverse code, written by Hadley Wickham.

See Also

library(), utils::install.packages()

Examples

```
## Not run:
SciViews::R
## End(Not run)
```

timing Timing of R expressions

Description

Similar to system. time() but returns a more convenient 'difftime' object with the overall timing (details are stored in the details attribute).

Usage

timing(expr, gc.first $=$ TRUE)

Arguments

expr Valid R expression to be timed. If missing, proc.time() is used instead and the function returns the time the currently running R process has already taken.
gc.first Logical - should a garbage collection be performed immediately before the timing? Default is TRUE.

See Also

system.time(), proc.time()

Examples

```
test <- timing(Sys.sleep(0.5))
test
attr(test, "details")
```

vectorplot Plot vectors inside a unit circle (PCA loadings or correlations plots).

Description

Plots vectors with $0<$ norms <1 inside a circle. These plots are mainly designed to represent variables in principal components space for PCAs.

Usage

```
vectorplot(x, ...)
## Default S3 method:
vectorplot(
    x,
    y,
    col = par("col"),
    circle.col = "gray",
    ar.length = 0.1,
    pos = NULL,
    cex = par("cex"),
    labels = NULL,
)
## S3 method for class 'loadings'
vectorplot(
    x,
    choices = 1L:2L,
    col = par("col"),
    circle.col = "gray",
    ar.length = 0.1,
    pos = NULL,
    cex = par("cex"),
    labels = rownames(x),
    main = deparse(substitute(x)),
)
## S3 method for class 'Correlation'
vectorplot(
    x,
```

```
    choices = 1L:2L,
    col = par("col"),
    circle.col = "gray",
    ar.length = 0.1,
    pos = NULL,
    cex = par("cex"),
    labels = rownames(x),
    main = deparse(substitute(x)),
    ...
)
```


Arguments

x
... Further arguments passed to plot functions.
$y \quad$ A numeric vector with $0<$ values <1 of same length as ' x.
col Color of the arrows and labels.
circle.col The color for the circle around the vector plot.
ar.length The length of the arrows.
pos
cex The factor of expansion for labels in the graph.
labels The labels to draw near the arrows.
choices A vector of two integers indicating the axes to plot.
main The title of the plot.

Value

The object ' x ' is returned invisibly. These functions are called for their side-effect of drawing a vector plot.

See Also

```
pcomp(), loadings(), Correlation()
```


Examples

```
# Create a PCA and plot loadings and correlations
iris.pca <- pcomp(iris[, -5])
vectorplot(loadings(iris.pca))
vectorplot(Correlation(iris.pca))
# Note: on screen devices, change aspect ratio of the graph by resizing
# the window to reveal cropped labels...
```


Index

```
* Vector and circular plot
    vectorplot,26
* aplot
    panels,10
    panels.diag, 14
    vectorplot,26
* color palettes
    colors, 3
* color
    colors, 3
* correlation matrix and plot
        correlation, 4
* datasets
        ln, }
        nr,9
* distribution
        correlation,4
* logarithm and exponential
        ln, }
* math
        ln, }
* models
        pcomp,18
* packages loading
        SciViews_R,24
* panel plots
        panels, 10
        panels.diag, 14
    * principal component analysis and biplot
        pcomp, 18
* utilities
        SciViews_R,24
as.Correlation (correlation), 4
as.correlation (correlation), 4
biplot(),22
biplot.pcomp (pcomp), 18
boxplot(),17
```

* Vector and circular plot
vectorplot, 26
* aplot
panels, 10
panels.diag, 14
vectorplot, 26
* color palettes
colors, 3
* color
colors, 3
* correlation matrix and plot correlation, 4
* datasets
ln, 8
$\mathrm{nr}, 9$
* distribution
correlation, 4
* logarithm and exponential ln, 8
* math
ln, 8
* models pcomp, 18
* packages loading SciViews_R, 24
* panel plots panels, 10 panels.diag, 14
* principal component analysis and biplot pcomp, 18
* utilities

SciViews_R, 24
as.Correlation (correlation), 4
as.correlation (correlation), 4
biplot(), 22
biplot. pcomp (pcomp), 18
boxplot(), 17

```
cm.colors(),4
```

cm.colors(),4
colorRampPalette(),4
colorRampPalette(),4
colors, 3
colors, 3
COLS (nr), }
COLS (nr), }
coplot(),10,13,14
coplot(),10,13,14
cor(), 13, 14
cor(), 13, 14
cor.test(), 13, 14
cor.test(), 13, 14
Correlation(correlation), 4
Correlation(correlation), 4
correlation,4
correlation,4
Correlation(), 22, 27
Correlation(), 22, 27
correlation(), 3
correlation(), 3
correlation.pcomp (pcomp), 18
correlation.pcomp (pcomp), 18
cov(),7
cov(),7
cov.mcd(),21
cov.mcd(),21
cov.mve(),21
cov.mve(),21
cov.wt(), 7, 21
cov.wt(), 7, 21
cov2cor(),7
cov2cor(),7
cwm.colors(colors), 3
cwm.colors(colors), 3
cwm_colors(colors), 3
cwm_colors(colors), 3
data.io::read(), 24
data.io::read(), 24
density(),16,17
density(),16,17
E (ln), 8
E (ln), 8
ellipse(),14
ellipse(),14
enum, }
enum, }
enum(), 3
enum(), 3
hist(), 16,17
hist(), 16,17
hsv(), 3
hsv(), 3
is.Correlation (correlation), 4
is.Correlation (correlation), 4
is.correlation (correlation),4
is.correlation (correlation),4
lb (ln), }
lb (ln), }
lg(ln), 8
lg(ln), 8
lg1p(ln),8
lg1p(ln),8
library(),25
library(),25
lines.Correlation (correlation),4
lines.Correlation (correlation),4
lines.pcomp (pcomp), 18
lines.pcomp (pcomp), 18
lm(), 13, 14

```
lm(), 13, 14
```

```
ln,8
ln(),3
ln1p(ln), }
loadings(), 22,27
log(),9
lowess(),13
model.frame(), 6, 20
na.fail(), 6,20
na.omit(), 6,20
nc (nr), }
nr,9
nr(),3
nrow(),10
options(),20
pairs(), 10, 13, 14, 17
pairs.pcomp (pcomp), 18
panel.boxplot (panels.diag), 14
panel.cor (panels), 10
panel.density (panels.diag), 14
panel.ellipse (panels), 10
panel.hist (panels.diag), 14
panel.qqnorm(panels.diag),14
panel.reg (panels), 10
panel.smooth(), 13, 14
panel_boxplot (panels.diag), 14
panel_boxplot(), 3,17
panel_cor (panels), 10
panel_cor(), 7
panel_density (panels.diag), 14
panel_density(),17
panel_ellipse (panels), 10
panel_hist (panels.diag), 14
panel_hist(), 17
panel_qqnorm(panels.diag), 14
panel_qqnorm(),17
panel_reg (panels), 10
panel_reg(), 3
panel_smooth (panels), 10
panels, 10
panels.diag,14
pcomp, 18
pcomp(), 3, 27
plot.Correlation (correlation),4
plot.pcomp (pcomp), 18
plotcorr(),7
```

points.pcomp (pcomp), 18
prcomp(), 20, 22
predict. pcomp (pcomp), 18
princomp(), 20, 22
print(), 24
print.Correlation (correlation), 4
print. pcomp (pcomp), 18
print. SciViews_conflicts
(SciViews_packages), 23
print.SciViews_R (SciViews_R), 24
print.summary.Correlation
(correlation), 4
print. summary.pcomp (pcomp), 18
proc.time(), 25
qqnorm(), 17
R(SciViews_R), 24
R(), 3
rlm(), 13
ROWS (nr), 9
rwb.colors (colors), 3
rwb_colors (colors), 3
rwb_colors(), 3
rwg.colors (colors), 3
rwg_colors (colors), 3
ryg.colors (colors), 3
ryg_colors (colors), 3
scale(), 21
SciViews-package, 2
SciViews_conflicts(SciViews_packages),
23
SciViews_conflicts(), 24
SciViews_packages, 23
SciViews_packages(), 24
SciViews_packages_topics
(SciViews_packages), 23
SciViews_R, 24
scores (pcomp), 18
screeplot. pcomp (pcomp), 18
seq_along(), 8
summary. Correlation (correlation), 4
summary.pcomp (pcomp), 18
symnum(), 7
system.time(), 25
text. pcomp (pcomp), 18
tidyverse: :tidyverse_conflicts(), 23
tidyverse::tidyverse_packages(), 23
timing, 25
timing(), 3
utils: :install.packages(), 25
vectorplot, 26
vectorplot(), 22, 27

